清华大学 普通人如何抓住DeepSeek红利,最大限度维持职场 专业度。 如何使用DeepSeek攻克学习中的困难 “学习太难?DeepSeek带你‘开挂’逆袭! 场景1:课堂上突然跟不上了,怎么办 场景:数学课上,老师正在讲解“隐函数求导”,步骤写到第三行时突然跳过了中间推导,直接给出结果:“所 以这里的dy/dx=(-2x-y)/(x+3y²)”。你盯着白板上的公式一脸懵——前两步的链式法则展开去哪了?为什么分 母突然多了3y²? 场景1:课堂上突然跟不上了,怎么办 1.课堂当下(隐蔽求助) p 适用场景:课堂上随时快速跟进 p 操作技巧: Ø 在笔记软件中快速标注困惑点(如:“疑问:第二 步到第三步如何展开?”) Ø 输入精准问题: “隐函数求导例题:从方程x² + xy + y³ = 0推导 dy/dx,请展示完整的链式法则展开步骤,特别是分母 3y²的来源。” Ø 秒速获取步骤解析: 立即对照补全笔记,跟上老师进度。 2. 课间5分钟(深度追问) 适用场景:老师已下课,但10分钟后还有后续课程 p 操作技巧: Ø 追问细节: “为什么对y³求导会得到3y²·dy/dx而不是3y²?” Ø 让AI用类比解释: “请用‘水管流速’比喻说明隐函数求导中dy/dx的意 义。” Ø 生成记忆口诀: “把隐函数求导步骤编成顺口溜,包含‘遇y先写 dy/dx’等关键词。” 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)“写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通“写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 领域的巨大潜力,但其仍然处于发展阶段,存在一定局限性和优化 空间。未来,随着技术的不断进步和创新,DeepSeek R1 可能会在以下几个方面实现进一步的突破: 通用能力提升 解决语言混杂问题 目前,DeepSeek R1在函数调用、多轮 对话、复杂角色扮演和 JSON 输出等任 务中的能力不及 DeepSeek-V3。未来, DeepSeek计划探索如何利用长推理链 来增强在这些任务的表现。 优化提示工程 目0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek图解10页PDFScaling Laws(扩展规律)的指导和模型自身架构的优势。 Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多 元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提 取出通用的知识。而 Transformer 这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2 顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取0 码力 | 11 页 | 2.64 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA 和 Google Cloud TPU 均是此类工具。 这类工具通常由开源社区支持和维护,提供了灵活、可扩展的工具和 库来构建和训练大型机器学习模型,如 TensorFlow 和 PyTorch 和 Hugging Face Transformers 等。 TensorFlow 架构图 (图源:https://www0 码力 | 32 页 | 13.09 MB | 1 年前3
普通人学AI指南效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。 2. 镜像(Imag0 码力 | 42 页 | 8.39 MB | 8 月前3
Deepseek R1 本地部署完全手册2. 下载并合并模型分⽚: 3. 安装Ollama: 4. 创建Modelfile: 5. 运⾏模型: 4. 性能调优与测试 GPU利⽤率低:升级⾼带宽内存(如DDR5 5600+)。 扩展交换空间: 六、注意事项与⻛险提示 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。 671B模型:需8xH100集群,仅限超算中⼼部署。 20 码力 | 7 页 | 932.77 KB | 8 月前3
00 Deepseek官方提示词“ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 纲构建方法。可根据不同的主题需求,如商业文案、文学创作、学术论文等,生成具有针对性、逻辑性和条理性0 码力 | 4 页 | 7.93 KB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)控制、任务规划、路径规划、协同决策、组网通信等标准。 11. 跨媒体智能标准。规范文本、图像、视频、音频等多模 态数据处理基础、转换分析、融合应用等方面的技术要求,包括 数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展 等标准。 12. 具身智能标准。规范多模态主动与交互、自主行为学习、 仿真模拟、知识推理、具身导航、群体具身智能等标准。 (四)智能产品与服务标准 智能产品与服务标准主要包括智能机器人、智能运载工具、0 码力 | 13 页 | 701.84 KB | 1 年前3
共 10 条
- 1













