清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集 目前DeepSeek R1、Open AI o3mini、Kimi 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 1、读取文件; 2、根据指定内容整理成表格。 任务 Open AI0 码力 | 85 页 | 8.31 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 逻辑关系和相互作用,包括人工智能参考架构、人工智能系统生 命周期及利益相关方等标准。 3. 测试评估标准。规范人工智能技术发展的成熟度、人工 测试评估标准。规范人工智能技术发展的成熟度、人工 智能体系架构之间的适配度、行业发展水平、企业智能化能力等 方面的测试及评估的指标要求,包括与人工智能相关的服务能力 成熟度评估,人工智能通用性测试指南、评估原则和等级要求, 企业智能化能力框架及测评要求等标准。 4. 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 1. 基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架0 码力 | 13 页 | 701.84 KB | 1 年前3
人工智能安全治理框架 1.02.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 存在偏见或歧视, 甚至输出存在民族、宗教、国别、地域等歧视性内容。 (c)鲁棒性弱风险。由于深度神经网络存在非线性、大规模等特点,人 工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 现实域安全风险 (a)诱发传统经济社会安全风险。人工智能应用于金融、能源、电信、交通、 民生等传统行业领域,如自动驾驶、智能诊疗等,模型算法存在的幻觉输出、 错误决策,以及因不当使用、外部攻击等原因出现系统性能下降、中断、失控 等问题,将对用户人身生命财产安全、经济社会安全稳定等造成安全威胁。 (b)用于违法犯罪活动的风险。人工智能可能被利用于涉恐、涉暴、涉赌、 涉毒等传统违法犯罪活动,包括传授违法犯罪技巧、隐匿违法犯罪行为、制作0 码力 | 20 页 | 3.79 MB | 1 月前3
Deepseek R1 本地部署完全手册作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署 三、国产芯⽚与硬件适配⽅案 1. 国内⽣态合作伙伴动态 企业 适配内容 性能对标(vs NVIDIA) 华为昇 腾 昇腾910B原⽣⽀持R1全系列,提供端到端推理优化 ⽅案 等效A100(FP16) 沐曦 GPU MXN系列⽀持70B模型BF16推理,显存利⽤率提升 30% 等效RTX 3090 海光 DCU 适配V3/R1模型,性能对标NVIDIA A100 等效A100(BF16) 2. 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 2. 国际接⼊渠道(需魔法或外企上⽹环境 ) 英伟达NIM:企业级GPU集群部署(链接) Groq:超低延迟推理(链接) 五、完整671B MoE模型部署(Ollama+Unsloth)0 码力 | 7 页 | 932.77 KB | 8 月前3
DeepSeek从入门到精通(20250204)维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(O le),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(O le),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAl-o1正式版。 (Pass@1) 分析你的顾虑(如“领导可能认为我不负责”),提供理性视角(如“家庭突发情况≠工作态度问题”)。 • 建议沟通框架:紧急情况说明+短期解决方案+责任承诺。例如: “张总,我家里老人突发中风住院(附病历),需要请假3天。我已将项目A的测试环节交接给小刘(附交接文 档),每天早晚会同步进度。周四返岗后加班追赶,确保不影响上线。” 2. 生成具体话术(用AI优化表达) p 操作:输入你的草稿:“张总,我家里有事要请假,但项目我会尽量兼顾。” 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序 ” 分步指导(如“先写递归函数 ”) 通用模型 细化步骤, 明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例 ” 模糊需求(如“写个排序代码 ”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样? ” 强制逻辑链条(如“分三点回答 ”) 推理模型 需明确对话目标,避免开放发散0 码力 | 65 页 | 4.47 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力 高质量数据、合成数据使模型知识密度的快速增长 大模型能以更少的参数量达到更高的性能 360联合北大研发:5%参数量逼近Deepseek-R1满血性能 18政企、创业者必读 DeepSeek出现之前的十大预判 之六 成本越来越低 过去一年,大模型成本「自由落体」 国外:GPT-4等效智能在过去18个月内价格下降240倍 Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 预训练算力前提下,大幅提升模型性能 DeepSeek颠覆式创新——技术创新 26政企、创业者必读 预训练模型如GPT——疯狂读书,积 累知识,Scaling law撞墙 预训练模型思考深度不够 算力见顶,变成少数巨头游戏 做过去只有人才能做的事 做人做的重复繁琐易出错的事 拆解繁琐复杂的业 务流程 55政企、创业者必读 场景选择示例:人员招聘系统 场景分得足够细,就可以训练对应的专业模型来解决问题 注:经360内部测试,深色的业务环节更加符合“四个十倍”原则 示例:人员招聘就是一个太大的、笼统的场景 需要细分成职位描述、简历筛选、面试评估等粒度更合适的场景 56政企、创业者必读 某省39家钢铁企业,联合打0 码力 | 76 页 | 5.02 MB | 5 月前3
开源中国 2023 大模型(LLM)技术报告以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持0 码力 | 32 页 | 13.09 MB | 1 年前3
普通人学AI指南闭源:由一个小团队开发的闭源 AI,专注于生成创意和艺术图像。 2.3 AI 视频工具 Figure 5: AI 视频工具 2.3.1 Sora (OpenAI 公司) 内测:由 OpenAI 开发,目前处于内部测试阶段的项目。 8 2.3.2 Runway 闭源:一个闭源的创意工具,支持通过 AI 进行视频编辑和生成。 2.3.3 Pika 闭源的图像编辑工具,专注于简化图像处理流程。 2.3.4 cker 提供轻量级虚拟化,能快 速部署并且易于管理应用。 Docker 的优势: 1. 快速部署:Docker 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 41中右下角的“创建并导入”按钮。 Figure 41: MaxKB 界面-知识库配置续 如下图 42所示,上传这里面的文件到本地 MaxKB 系统,还可以直接读取 一个文件夹,这样就更方便了。为了加快接入,选择一部分文件作为测试: Figure 42: MaxKB 界面-知识库配置续 然后点击右下角创建并导入,如下图 43所示: 36 Figure 43: MaxKB 界面-知识库配置续 导入后,系统就会开始处理分析和接入,如图0 码力 | 42 页 | 8.39 MB | 8 月前3
共 12 条
- 1
- 2













