积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部中文(简体)(11)中文(简体)(2)

格式

全部PDF文档 PDF(12)TXT文档 TXT(1)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    ”。 提示语链的设计和应用建立在多个理论基础之上,包括认知 心理学、信息处理理论、系统理论、创造性思维理论和元认 知理论,核心特征包括: 提示语链的作用机制(一) 任务分解与整合 思维框架构建 在提示语设计中,提示语链发挥着至关重要的作用,通过系统性地引导AI生成高质量、创新性的内容。以下 是提示语链在内容生成过程中的七个主要作用机制 1. 将这个复杂的主题分解为几个主要部分,逐一讨论每个部分。 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 目标 识别主要 任务 细化子任 务 定义微任 务 设计对应 提示语 建立任务 间联系 加入反馈 调整机制 SPECTRA任务分解模型 • Segmentation(分割):将大任务分为独立但相关的 部分 • Prioritiz Extrapolate(推演):将原理应用到新领域 �实战技巧:操作方法 1. 使用“评估矩阵”提示进行系统性筛选 2. 应用“优化循环”提示迭代改进想法 3. 设计“创意组合”提示融合不同概念 4. 使用“叙事架构”提示创建统一的故事线 5. 应用“综合提炼”提示形成最终观点 �实战技巧:操作方法 1. 使用“随机输入”提示引入跨领域元素 2. 应用“类比映射”提示建立领域间的联系 3. 设计“抽象化”提示提取核心原理
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    ”。 提示语链的设计和应用建立在多个理论基础之上,包括认知 心理学、信息处理理论、系统理论、创造性思维理论和元认 知理论,核心特征包括: 提示语链的作用机制(一) 任务分解与整合 思维框架构建 在提示语设计中,提示语链发挥着至关重要的作用,通过系统性地引导AI生成高质量、创新性的内容。以下 是提示语链在内容生成过程中的七个主要作用机制 1. 将这个复杂的主题分解为几个主要部分,逐一讨论每个部分。 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 目标 识别主要 任务 细化子任 务 定义微任 务 设计对应 提示语 建立任务 间联系 加入反馈 调整机制 SPECTRA任务分解模型 • Segmentation(分割):将大任务分为独立但相关的 部分 • Prioritiz Extrapolate(推演):将原理应用到新领域 �实战技巧:操作方法 1. 使用“评估矩阵”提示进行系统性筛选 2. 应用“优化循环”提示迭代改进想法 3. 设计“创意组合”提示融合不同概念 4. 使用“叙事架构”提示创建统一的故事线 5. 应用“综合提炼”提示形成最终观点 �实战技巧:操作方法 1. 使用“随机输入”提示引入跨领域元素 2. 应用“类比映射”提示建立领域间的联系 3. 设计“抽象化”提示提取核心原理
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 受众自动生成创意广告文案和宣传语,提高广 告创作效率。 • 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 语言逻辑清晰,条理分明, 各部分之间过渡自然,逻辑 连贯。在研究现状部分,按 照不同研究领域和主题进行 分类,逻辑性强 报告整体呈现出总分总的逻 辑架构,语言描述清晰,避 免冗长,使用简短的句子表 达复杂的信息 报告整体架构严谨,以引言、 技术原理、应用现状、技术 挑战、未来展望等部分进行 层层递进。语言中多使用中 性描述,客观呈现研究进展 与问题 语言逻辑严谨,条理清晰,各部分 5 年 1 月 2 0 日 2 0 2 4 年 1 2 月 2 6 日 发 布 总 参 数 达 6 7 1 0 亿 的 D e e p S e e k - V 3 , 采 用 创 新 MoE架构和FP8混合精度训练, 训练成本大幅降低 DeepSeek是一家专注通用人工智能(AGl)的中国科技公司,主攻大模型研发与应用。 DeepSeek-R1是其最新发布并开源的推理模型,擅长处理复杂任务且可免费商用,其性能
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型  Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17  推理网络  技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化  运营商、云服务可免费用,降低云服务成本  大型企业可使用多个DeepSeek,解决不同场景需求  中小企业免费部署,消除数字鸿沟  个人可以拥有自己的DeepSeek ,可以成为超级个体  对于创业者得到世界最先进大模型,如虎添翼,和巨头站在 59政企、创业者必读 关键基础之一:知识库打造 知识库打造是DeepSeek更懂企业的基础 知识自动汇集,不流失 多模态数据处理和理解 非结构化文档处理和理解 搜索,辅助内部办公和外部客户服务 为业务大模型RAG做准备 内部知识管理 • 把企业内部的碎片化知识, 把专 家头脑中的经验转化为显性知识 管理起来, 如员工邮件、 文档文 件、 聊天记录、 工作记录等 工作流知识管理 1
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    工具,其中很多都是开源! 2.1 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 6 Figure 3: AI 问答工具 ChatGPT 经过特别训练,可以理解和生成人类语言,从而在多种应用场景中提 可以简单理解为客户端,实现和大模型的交互。ollama 软件 win 和 mac 都包括,如图 11 所示。 13 Figure 11: Ollama 下载 在这里已经为大家准备好,只需要在我的微信公众号郭震 AI,回复消息: ollama,就能下载到软件。 下载之后打开,直接点击 Next 以及 Install 安装 ollama,安装步骤非常简 单。 3.1.2 步骤 2:安装 Llama 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    · 思维导图 React图表 · 折线图 · 柱状图 · 饼图 · 散点图 · 雷达图 · 组合图表 SVG矢量图 · 基础图形 · 图标 · 简单插图 · 流程图 · 组织架构图 常规绘图 DeepSeek的深度思考过程独树一帜 《香料三重奏》茄椒肠卷配酸奶薄荷酱 ??? 灵感地图:巴尔干半岛香料 × 地中海清新感 × 日式天妇罗手 法 ??? 结构解构: 1.青椒薄片 伊比利亚辣肠低温烘烤后粉碎成黄金脆粒 4.薄荷冷萃油 - 液态氮急冻薄荷叶萃取的翡翠色精油 ???️ 味觉风暴: •第1层:青椒脆片释放灯笼椒特有的清甜 •第2层:烟熏红椒粉在慕斯中爆破出暖意 •第3层:辣肠碎粒带来咸鲜微辣的颗粒感 •终章:薄荷冷萃油在舌尖炸开极地般的清凉 ??? 分子料理技法: 1.反卷造型:将传统卷物内外翻转,脆网外露包裹柔嫩内馅 2.温差游戏:65℃温热慕斯与-196℃冷萃油同盘 3.质构悖论: 自主学习,降低培训成本。通过提高工作效率,减少了 人力资源的浪费,降低了整体运营成本。 场景3:日常客户沟通与问题反馈处理 常见问题: 与甲方客户的沟通效率低,信息不对称,导致响应不及时或错误 场景:在日常与甲方客户的沟通中,客户服务人员或项目经理经常需要快速响应客户的各种问 题,例如: • 我们公司的最新促销活动是什么? • 我的订单状态是怎样的? • 能否提供更详细的产品规格说明? • 我们需要调整交货时间,能否协调?
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 20 项以上,促进人工智能产业全球 化发展。 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技 企事业单位积极参与国际标准化活动,携手全球产业链上下 游企业共同制定国际标准。 三、建设思路 (一)人工智能标准体系结构 人工智能标准体系结构包括基础共性、基础支撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 智能等的技术要求,推动人工智能技术创新和应用。智能产 品与服务标准主要规范由人工智能技术形成的智能产品和 服务模式。赋能新型工业化标准主要规范人工智能技术赋能 制造业全流程智能化以及重点行业智能升级的技术要求。行 业应用标准主要规范人工智能赋能各行业的技术要求,为人 工智能赋能
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.org/a/chanpin/oneflow/) 9 / 32 LLM 基础设施:大模型框架及微调 这些平台提供了从模型开发到部署的综合解决方案,包括计算资源、 数据存储、模型训练和部署服务。它们通常提供易于使用的界面,支 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure Machine Learning 都是提供端到 端机器学习服务的云平台。 这些工具和库专门为加速机器学习模型的训练和推理而设计,通常利 用
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 人工智能安全治理框架 1.0

    全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . 5 2.1 LLM 基础概念 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Transformer 基础架构 . . . . . . . . . . . . . . . . . . . . . . 6 2.3 LLM 基本训练方法 . . . . . . . . . . . . . . . . . . 特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek 好处 本地搭建 DeepSeek 三个比较实际的好处: • 本教程接入的是 DeepSeek 推理模型 R1,开源免费,性能强劲 就是正式回答,如下图6所示: 图 6: deepseek-r1 回复之正式回答部分 2 DeepSeek 零基础必知 为了更深入理解 DeepSeek-R1,首先需要掌握 LLM 的基础知识,包括其工 作原理、架构、训练方法。 近年来,人工智能(AI)技术的快速发展催生了大型语言模型((Large Language Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域 发挥着越来越重要的
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学DeepResearch科研周鸿祎演讲我们带来创业机会360202502普通通人普通人AI指南如何抓住红利国家人工智能人工智能产业综合标准标准化体系建设2024开源中国2023模型LLM技术报告安全治理框架1.0图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩