积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部中文(简体)(6)中文(简体)(2)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    : 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 内容深度 通过多步引导,实现更深入的内容 探讨 控制每个步骤的输出深度,避免冗余 创意激发 多角度提示激发AI的创造性思维 在创意和连贯之间找到平衡 质量控制 多次迭代提高内容质量 需要更多的实践和计算资源 灵活调整 可根据中奖结果随时调整后续提示 实时调整需要较高的判断和决策能力 提示语链的优势与挑战 提示语链的设计原则 01 目标明确性 02 逻辑连贯性 03 渐进复杂性 04 整合所有输出,形成最终成果 I n s t r u c t i o n ( 指 令 ) 给出具体的指示 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    : 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 内容深度 通过多步引导,实现更深入的内容 探讨 控制每个步骤的输出深度,避免冗余 创意激发 多角度提示激发AI的创造性思维 在创意和连贯之间找到平衡 质量控制 多次迭代提高内容质量 需要更多的实践和计算资源 灵活调整 可根据中奖结果随时调整后续提示 实时调整需要较高的判断和决策能力 提示语链的优势与挑战 提示语链的设计原则 01 目标明确性 02 逻辑连贯性 03 渐进复杂性 04 整合所有输出,形成最终成果 I n s t r u c t i o n ( 指 令 ) 给出具体的指示 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小  美国预训练堆算力的路线不可持续,有待发现新范式“换道超车”  软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 DeepSeek是完美的颠覆式创新  技术创新——让过去做不到的事情可以做到 Law转变为强化学习Scaling Law 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 算力见顶,变成少数巨头游戏 预训练大模型 推理大模型 预训练大模型难以通往AGI之路  推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思  预训练范式像是记忆和模仿,强化学习范 式更像探索实践  记住很多东西只是基础,真正有价值的是 融会贯通 R1找到了人类通往AGI的方向 DeepSeek颠覆式创新——技术创新 27 DeepSeek-R1和GPT-4o不是同一个物种政企、创业者必读
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 导致工作秘密、商业秘密、敏感业务数据泄露。 (d)滥用于网络攻击的风险。人工智能可被用于实施自动化网络攻击或- 6 - 人工智能安全治理框架 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 游模型。 及应用特点,明确人工智能训练、标注、使用、输出等各环节的数据安全和个 人信息保护要求。 5.4 构建负责任的人工智能研发应用体系。研究提出“以人为本、智能 向善”在人工智能研发应用中的具体操作指南和最佳实践,持续推进人工智能 设计、研发、应用的价值观、伦理观对齐。探索适应人工智能时代的版权保护 和开发利用制度,持续推进高质量基础语料库和数据集建设,为人工智能安全 发展提供优质营养供给。制定人工智能伦理审查准则、规范和指南,完善伦理
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤可可(清华博士后、北石化助理教授):人机共生之AIGC短视频 • 安梦瑶(清华大学博士后):人机共生之AI诊疗研究 • 陶炜(清华大学博士生):人机共生之AI实时增强技术的探索与实践 • 胡晓李(清华大学博士后):人机共生之游戏设计 费……通过该报告为相关企业管理 者提供……策略支撑 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    4小时、急需转移独居失智老 人、社区抢购导致物资短缺 DeepSeek应急协议: ① 资源热力图: 实时整合气象局数据/道路塌方报告/医院接诊状态 物资预测算法锁定3公里内未饱和便利店 ② 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播 ③ 企业级应急: 启动边缘计算节点转移关键数据 致内容 趋于一致,而非收敛性提示语和多样化设计能突破逻辑循环。 结合自适应反馈和递进式提示链,可推动智能体生成新内容, 避免知识循环,拓宽智能体的生成空间,为人机共生系统中的 深层交互与创新实践提供新路径。 结合自适应反馈和递进式提示链 让AI生成优质内容 p 当AI面对收敛性高的提示词时,生成内容趋于一致,主要依赖已有知识的重复和组合。提示词的收敛性和对话轮次共 同影响生成内容的 真伪辨识: 评估内容可靠性 • 价值评估: 判断应用价值 • 风险预测: 预见潜在风险 • 情境适配: 评估场景适用性 核心观点: 保持独立思考, 做AI输出的把关 者 引导力 • 提示工程: 设计高效指令 • 对话管理: 控制交互方向 • 任务分解: 优化问题结构 • 质量控制: 把控输出质量 核心观点: 主导AI交互过程, 确保输出符合 预期 四大核心能力 基础使用层
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 故事化数据呈现:借助o3mini将数据以 故事的形式呈现,增强数据的可读性和吸引力, 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 97.3%,表现与 OpenAI-o1-1217 相当,远超其他模型。 • 代码生成能力达专家级水平:DeepSeek R1在编程任务中,Elo评分达 2029,超越 96.3% 的人类参赛者;在工程任务中DeepSeek-R1表现略优 于 DeepSeek V3,这对开发人员在实际任务中有潜在帮助。  知识类任务表现  其他任务表现 • 在创意写作、问答、编辑、摘要等任务中,DeepSeek
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    演化、动态自适应、动态识别、人机协同感知、人机协同决策与 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和 10 智能体基本功能、应用架构等技术要求,包括智能体强化学习、 多任务分解、推理、提示词工程,智能体数据接口和参数范围, 人机协作、智能体自主操作、多智能体分布式一致性等标准。 10. 群体智能标准。规范群体智能算法的控制、编队、感知、 规划、决策、通信等技术要求和评测方法,包括自主控制、协同
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学周鸿祎演讲我们带来创业机会360202502人工智能人工智能安全治理框架1.0第二赋能职场普通通人普通人如何抓住红利DeepResearch科研国家产业综合标准标准化体系建设指南2024
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩