人工智能安全治理框架 1.0导致工作秘密、商业秘密、敏感业务数据泄露。 (d)滥用于网络攻击的风险。人工智能可被用于实施自动化网络攻击或- 6 - 人工智能安全治理框架 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 游模型。 (e)重点领域使用者应增强网络安全、供应链安全等方面的能力,降低 人工智能系统被攻击、重要数据被窃取或泄露的风险,保障业务不中断。 (f) 重点领域使用者应合理限制人工智能系统对数据的访问权限,制定 数据备份和恢复计划,定期对数据处理流程进行检查。 (g)重点领域使用者应确保操作符合保密规定,在处理敏感数据时使用 加密技术等保护措施。 (h)重点领域使用者应对人工智能行为和影响进行有效监督,确保人工0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 故事化数据呈现:借助o3mini将数据以 故事的形式呈现,增强数据的可读性和吸引力, 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 97.3%,表现与 OpenAI-o1-1217 相当,远超其他模型。 • 代码生成能力达专家级水平:DeepSeek R1在编程任务中,Elo评分达 2029,超越 96.3% 的人类参赛者;在工程任务中DeepSeek-R1表现略优 于 DeepSeek V3,这对开发人员在实际任务中有潜在帮助。 知识类任务表现 其他任务表现 • 在创意写作、问答、编辑、摘要等任务中,DeepSeek0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204): 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 整合所有输出,形成最终成果 I n s t r u c t i o n ( 指 令 ) 给出具体的指示 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 6. 动态反馈与迭代优化 • 在收到回答后,指出模型的误差 或不足,并要求修正 • 让模型根据前一轮的输出进行自 我改进 • 请求模型总结多轮对话中的关键 点,确保连贯性和准确性 提示词工程:精准指引 效能增益0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通: 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 整合所有输出,形成最终成果 I n s t r u c t i o n ( 指 令 ) 给出具体的指示 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 6. 动态反馈与迭代优化 • 在收到回答后,指出模型的误差 或不足,并要求修正 • 让模型根据前一轮的输出进行自 我改进 • 请求模型总结多轮对话中的关键 点,确保连贯性和准确性 提示词工程:精准指引 效能增益0 码力 | 103 页 | 5.40 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” 软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 DeepSeek是完美的颠覆式创新 技术创新——让过去做不到的事情可以做到 Law转变为强化学习Scaling Law 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 年,周鸿祎带领360确定“安全+AI”双主线发展战略,自研认 知型通用大模型“360智脑”,攻克AI大模型安全的世界前沿 课题,进一步服务政府、城市、企业智能化升级。 周鸿祎荣获全国劳动模范、国家百千万人才工程有突出贡献 中青年专家、2023年度“北京学者“等荣誉称号。 74 政企、创业者必读政企、创业者必读 • 国家级网络攻击的发现、捕获、抵御能力全球领先 • 安全大数据 (攻击样本库、病毒基因库、安全知识库0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 普通人如何抓住DeepSeek红利4小时、急需转移独居失智老 人、社区抢购导致物资短缺 DeepSeek应急协议: ① 资源热力图: 实时整合气象局数据/道路塌方报告/医院接诊状态 物资预测算法锁定3公里内未饱和便利店 ② 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播 ③ 企业级应急: 启动边缘计算节点转移关键数据 真伪辨识: 评估内容可靠性 • 价值评估: 判断应用价值 • 风险预测: 预见潜在风险 • 情境适配: 评估场景适用性 核心观点: 保持独立思考, 做AI输出的把关 者 引导力 • 提示工程: 设计高效指令 • 对话管理: 控制交互方向 • 任务分解: 优化问题结构 • 质量控制: 把控输出质量 核心观点: 主导AI交互过程, 确保输出符合 预期 四大核心能力 基础使用层0 码力 | 65 页 | 4.47 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场费……通过该报告为相关企业管理 者提供……策略支撑 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如0 码力 | 35 页 | 9.78 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)演化、动态自适应、动态识别、人机协同感知、人机协同决策与 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和 10 智能体基本功能、应用架构等技术要求,包括智能体强化学习、 多任务分解、推理、提示词工程,智能体数据接口和参数范围, 人机协作、智能体自主操作、多智能体分布式一致性等标准。 10. 群体智能标准。规范群体智能算法的控制、编队、感知、 规划、决策、通信等技术要求和评测方法,包括自主控制、协同0 码力 | 13 页 | 701.84 KB | 1 年前3
共 8 条
- 1













