积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(11)人工智能(11)

语言

全部中文(简体)(9)中文(简体)(2)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 11 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 人工智能安全治理框架 1.0

    全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; ② 预 求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; ② 预 求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    “将以下段落改写成政府报告风格,加入‘数字化转型’‘双碳战略’等关键词:{粘贴原文}” p生成图表: 指令:“将上文‘设备配置表’转换成LaTeX格式的三线表。”插入图表后,自动增加方案“厚度”。 p最终润色: “检查以下方案书逻辑漏洞,列出3个可能被客户质疑的点,并给出应对答案。” p关键提醒: ü 保命优先级:先堆字数再优化,前30分钟专注“把文档撑到10000字”。 ü 虚构数据标注:所有AI生成的数据加“(示例)”后缀,避免背锅。 ”而非“对抗”态度,如:“您看这样 处理是否可行?我可以再调整。” 关键提醒: • 避免:“可能”“尽量”等模糊词汇,直接说“我能做到XX”。 • 证明可靠性:提前整理好交接文档(用AI辅助检查遗漏),主动降低领导风险感知。 • 人性化:适当流露脆弱(如“这次确实很难兼顾”),但强调“不愿让团队受影响”。 • 通过DeepSeek的理性分析和话术优化,你能在保护家庭需求的同时,最大限度维持职场 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包含了大量基于2020年之前数据生成的问答对。 提取问题:从数据集中提取问题,并使用set去重。 检查问题数量:确保提取的问题数量至少为10万个。 保存问题:将问题保存到CSV文件生成的真实答案问题.csv中。 要生成10万个存在真实答案的问题,并且基于2020年之前的 数据,可以使用现有的公开问答数据集(如SQuAD
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    基于 DeepSeek R1的中文数据处理能力,快速分 析法律文本,提取关键信息,自动生成合同草 案、法律意见书等,提高律师工作效率。 • 智能医疗数据分析与诊断:构建智能医疗 平台,分析病历、检查报告和基因数据,帮助 医生提供更准确的诊断与治疗方案。 • 金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 题】。作为该领域的专家,请帮助我解读该图。 论文参考文献格式指令 指令:我想请你担任一份研究手稿的参考文献编辑。我将为你提供五个参考文献模板,你应将其作为指南。之后, 我会提供更多参考文献,你需要检查这些参考文献的格式问题,如标点符号的位置和间距。给出一个包含三列的 标记表,第一列是原文,第二列是固定文本,第三列是解释,然后提供所有固定的参考文献。以下是需要修正的 五个示例模板和参考文献: 使其在学术研究和工业应 用中具有广泛的应用前景 可解释性和可靠性 需要采取措施确保模型的 可靠性和可解释性 社区参与 需要社区成员的共同参与 维护和更新,需要较高的 社区活跃度和凝聚力 安全性 需要采取措施确保模型的 安全性和隐私保护 模型 训练成本 调用成本 (输入/百万 tokens) 调用成本 (输出/百万 tokens) DeepSeek-V3 557.6万美元 0.14美元(缓存未命中)
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 创业公司得到DeepSeek加持,创业者拥有便宜领先的大模型,迎来 机遇,带来“iPhone时刻” 中国变成AI渗透率最高的国家,率先实现AI工业革命 37政企、创业者必读 人人智能 万物智能 数转智改 未来产业 科学研究 安全 应用爆发的六大方向 38政企、创业者必读 DeepSeek的开源和低成本使得个人也能够拥有自有大模型,实现超能力, 成长为超级个体 DeepSeek六大应用方向之一 人人智能:人人都要用AI 从数年缩短到几分钟,解开了生物学密码 成功预测了地球存在的2亿种蛋白质结构 45政企、创业者必读  DeepSeek典型的四大安全问题:客户端安全、Agent安全、知识安全、模型安全  360提出「以模制模」新解法,应对DeepSeek安全问题 DeepSeek六大应用方向之六 AI安全:实现安全的「自动驾驶」 46政企、创业者必读 大模型的六大能力 47 基本 能力 业务 能力 创新 能力
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 一、产业发展现状 人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。 企事业单位积极参与国际标准化活动,携手全球产业链上下 游企业共同制定国际标准。 三、建设思路 (一)人工智能标准体系结构 人工智能标准体系结构包括基础共性、基础支撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    . 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 Tuning),如下图11所示。通用强化学习训练过 程后,使得 R1 不仅在推理任务中表现卓越,同时在非推理任务中也表现出 色。但由于其能力拓展至非推理类应用,因此在这些应用中引入了帮助性 (helpfulness)和安全性(safety)奖励模型(类似于 Llama 模型),以优化 与这些应用相关的提示处理能力。 DeepSeek-R1 是训练流程的终点,结合了 R1-Zero 的推理能力和通用强化 学习的任 DeepSeek-R1 中间推理模型生成:通过推理导向的强化学习(Reasoning-Oriented RL), 直接生成高质量的推理数据(CoT 示例),减少人工标注依赖。通用强化学 习优化:基于帮助性和安全性奖励模型,优化推理与非推理任务表现,构建 通用性强的模型。最终,DeepSeek-R1 将 R1-Zero 的推理能力与通用强化 学习的适应能力相结合,成为一个兼具强推理能力和任务广泛适应性的高
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的日期)来 确定大型语言模型(大小超过 10B)的发展历程。如果没有相应的论文,我们 将模型的日期设定为其公开发布或宣布的最早时间。我们用黄色标记那些公开 可用的模型检查点。由于空间限制,我们只包括那些公开报道评估结果的大型 语言模型。 Figure 2: 各个大型语言模型发布时间线 5 1.4 基础概念 1.4.1 上下文窗口 上下文窗口指的是模型一次可
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    执行层: 2. 能力矩阵 (Capability Matrix) •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表? 如何使用DeepSeek制作可视化图表?
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
人工智能人工智能安全治理框架1.0DeepSeek入门精通20250204清华华大大学清华大学普通通人普通人如何抓住红利DeepResearch科研周鸿祎演讲我们带来创业机会360202502国家产业综合标准标准化体系建设指南2024图解10PDFAI第二赋能职场
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩