 亿联TVM部署0 码力 | 6 页 | 1.96 MB | 5 月前3 亿联TVM部署0 码力 | 6 页 | 1.96 MB | 5 月前3
 Deepseek R1 本地部署完全手册《Deepseek R1 本地部署完全⼿册》 版权归:HomeBrew Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP80 码力 | 7 页 | 932.77 KB | 8 月前3 Deepseek R1 本地部署完全手册《Deepseek R1 本地部署完全⼿册》 版权归:HomeBrew Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP80 码力 | 7 页 | 932.77 KB | 8 月前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二)  从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI  从数字空 Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17  大模型进入「轻量化」时代,上车上终端,蒸馏小模型  先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力  高质量数据、合成数据使模型知识密度的快速增长  大模型能以更少的参数量达到更高的性能  36 国外:GPT-4等效智能在过去18个月内价格下降240倍  国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要  由文本生成迈向图像、视频、3D内容与世界模拟  多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力0 码力 | 76 页 | 5.02 MB | 5 月前3 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二)  从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI  从数字空 Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17  大模型进入「轻量化」时代,上车上终端,蒸馏小模型  先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力  高质量数据、合成数据使模型知识密度的快速增长  大模型能以更少的参数量达到更高的性能  36 国外:GPT-4等效智能在过去18个月内价格下降240倍  国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要  由文本生成迈向图像、视频、3D内容与世界模拟  多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力0 码力 | 76 页 | 5.02 MB | 5 月前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1.当天日期;2.当天的铁路客运量、 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 预测交通拥堵,为城市规划提供决策支持。 • 交互式数据可视化:在商业智能和数据0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1.当天日期;2.当天的铁路客运量、 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 预测交通拥堵,为城市规划提供决策支持。 • 交互式数据可视化:在商业智能和数据0 码力 | 85 页 | 8.31 MB | 8 月前3
 开源中国 2023 大模型(LLM)技术报告的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg e-ai-infrastructure- vector-database/) 7 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 数据集,这些数据将用于微调模型; 3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务; 4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力; 5.部署:将性能经验证的模型部署到实际应用中去。 微调的过程也是分类模型训练的过程 (图源:https://medium.com/mlearning-ai/what-is-a-fine-tuned-llm-67bf0b5df081)0 码力 | 32 页 | 13.09 MB | 1 年前3 开源中国 2023 大模型(LLM)技术报告的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg e-ai-infrastructure- vector-database/) 7 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 数据集,这些数据将用于微调模型; 3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务; 4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力; 5.部署:将性能经验证的模型部署到实际应用中去。 微调的过程也是分类模型训练的过程 (图源:https://medium.com/mlearning-ai/what-is-a-fine-tuned-llm-67bf0b5df081)0 码力 | 32 页 | 13.09 MB | 1 年前3
 国家人工智能产业综合标准化体系建设指南(2024版)1 国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 特点,亟需 完善人工智能产业标准体系。 二、总体要求 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 方法、性能指标和评价方法等标准。 4. 计算设备标准。规范人工智能加速卡、人工智能加速模0 码力 | 13 页 | 701.84 KB | 1 年前3 国家人工智能产业综合标准化体系建设指南(2024版)1 国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 特点,亟需 完善人工智能产业标准体系。 二、总体要求 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 方法、性能指标和评价方法等标准。 4. 计算设备标准。规范人工智能加速卡、人工智能加速模0 码力 | 13 页 | 701.84 KB | 1 年前3
 普通人学AI指南. . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . . . 21 4.3 步骤二 docker 部署 lobechat . . . . . . . . . . . . . . . . . . . . . 22 4.4 愉快使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 部署常见问题 . . . . . . . . . . . . . Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 2.4.6 Cursor 开源的 AI 代码编辑器,旨在通过 AI 技术助力快速软件开发。0 码力 | 42 页 | 8.39 MB | 8 月前3 普通人学AI指南. . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . . . 21 4.3 步骤二 docker 部署 lobechat . . . . . . . . . . . . . . . . . . . . . 22 4.4 愉快使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 部署常见问题 . . . . . . . . . . . . . Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 2.4.6 Cursor 开源的 AI 代码编辑器,旨在通过 AI 技术助力快速软件开发。0 码力 | 42 页 | 8.39 MB | 8 月前3
 人工智能安全治理框架 1.04 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。 4.1.2 数据安全风险应对 (a) 在训练数据和用户交互数据的收集、存储、使用、加工、传输、提0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.04 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。 4.1.2 数据安全风险应对 (a) 在训练数据和用户交互数据的收集、存储、使用、加工、传输、提0 码力 | 20 页 | 3.79 MB | 1 月前3
 清华大学第二弹:DeepSeek赋能职场DeepSeek如何赋能职场应用? ——从提示语技巧到多场景应用 中央民族大学 新闻与传播学院 清华大学 @新媒沈阳 团队 向安玲 Innovator For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 互联网虛假新闻检测2019全球挑战赛-虛假新闻多模态检测 第一名 中国法研杯CAIL2020司法人工智能赛 第一名 DeepSeek的三种模式 平台 地址 版本 备注 英伟达NIM微服务 https://build.nvidia.com/d azure.com 671B(全量模型) 需注册微软账户并创建订阅,免费部署,支持参数调节。 亚马逊AWS https://aws.amazon.com/c n/blogs/aws/deepseek-r1- models-now-available-on- aws 671B(全量模型) 需注册AWS账户,填写付款方式,免费部署。 Cerebras https://cerebras.ai 70B0 码力 | 35 页 | 9.78 MB | 8 月前3 清华大学第二弹:DeepSeek赋能职场DeepSeek如何赋能职场应用? ——从提示语技巧到多场景应用 中央民族大学 新闻与传播学院 清华大学 @新媒沈阳 团队 向安玲 Innovator For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 互联网虛假新闻检测2019全球挑战赛-虛假新闻多模态检测 第一名 中国法研杯CAIL2020司法人工智能赛 第一名 DeepSeek的三种模式 平台 地址 版本 备注 英伟达NIM微服务 https://build.nvidia.com/d azure.com 671B(全量模型) 需注册微软账户并创建订阅,免费部署,支持参数调节。 亚马逊AWS https://aws.amazon.com/c n/blogs/aws/deepseek-r1- models-now-available-on- aws 671B(全量模型) 需注册AWS账户,填写付款方式,免费部署。 Cerebras https://cerebras.ai 70B0 码力 | 35 页 | 9.78 MB | 8 月前3
 DeepSeek图解10页PDFPDF 作者:郭震 2025.2.3 目录 1 本地部署并运行 DeepSeek . . . . . . . . . . . . . . . . . . . . . . 2 1.1 为什么要在本地部署 DeepSeek . . . . . . . . . . . . . . . . . 2 1.2 DeepSeek 本地部署三个步骤 . . . . . . . . . . . . . 11 4 参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 R1,开源免费,性能强劲 • 本教程搭建方法 零成本,不需花一分钱。 • 为了照顾到大部分读者,推荐的搭建方法已将电脑配置要求降 到最低,普通电脑也能飞速运行。 1.2 DeepSeek 本地部署三个步骤 一共只需要三步,就能做到 DeepSeek 在本地运行并与它对话。 第一步,使用的是 ollama 管理各种不同大模型,ollama 比较直接、干净, 一键下载后安装就行,安装过程基本都是下一步。0 码力 | 11 页 | 2.64 MB | 8 月前3 DeepSeek图解10页PDFPDF 作者:郭震 2025.2.3 目录 1 本地部署并运行 DeepSeek . . . . . . . . . . . . . . . . . . . . . . 2 1.1 为什么要在本地部署 DeepSeek . . . . . . . . . . . . . . . . . 2 1.2 DeepSeek 本地部署三个步骤 . . . . . . . . . . . . . 11 4 参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 R1,开源免费,性能强劲 • 本教程搭建方法 零成本,不需花一分钱。 • 为了照顾到大部分读者,推荐的搭建方法已将电脑配置要求降 到最低,普通电脑也能飞速运行。 1.2 DeepSeek 本地部署三个步骤 一共只需要三步,就能做到 DeepSeek 在本地运行并与它对话。 第一步,使用的是 ollama 管理各种不同大模型,ollama 比较直接、干净, 一键下载后安装就行,安装过程基本都是下一步。0 码力 | 11 页 | 2.64 MB | 8 月前3
共 15 条
- 1
- 2













