DeepSeek从入门到精通(20250204)“写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 幻觉类型 数据可用 性 理解 能力 深度 语境精 确度 外部信息 整合能力 逻辑推理和 抽象能力 典型错误表现 数据误用 有数据 低 高 高 中 误用已有数据,回答 部分不符或细节错误 语境误解 有数据 高 低 高 中 对问题的意图理解错 误,回答偏离主题 信息缺失 无数据 中 高 低 中 未能正确获取或整合 外部信息 推理错误 部分数据 高 高 中 低 逻辑推理中存在漏洞 或错误假设 开展和目标达成。请遵循 以下要求: 1. 执行摘要(300字内):概括整个执行方案的核心内容、主要目标和关键成 功因素。 2. 项目团队构成(300字内):列出核心项目团队成员,包括内部人员和外部 合作方。明确每个角色的主要职责和决策权限。 3. 里程碑规划(1200字内):设定5—7个关键里程碑事件。每个里程碑都应包 含具体目标、完成标准和时间节点。使用甘特图呈现整体时间线。 4.0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通“写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 幻觉类型 数据可用 性 理解 能力 深度 语境精 确度 外部信息 整合能力 逻辑推理和 抽象能力 典型错误表现 数据误用 有数据 低 高 高 中 误用已有数据,回答 部分不符或细节错误 语境误解 有数据 高 低 高 中 对问题的意图理解错 误,回答偏离主题 信息缺失 无数据 中 高 低 中 未能正确获取或整合 外部信息 推理错误 部分数据 高 高 中 低 逻辑推理中存在漏洞 或错误假设 开展和目标达成。请遵循 以下要求: 1. 执行摘要(300字内):概括整个执行方案的核心内容、主要目标和关键成 功因素。 2. 项目团队构成(300字内):列出核心项目团队成员,包括内部人员和外部 合作方。明确每个角色的主要职责和决策权限。 3. 里程碑规划(1200字内):设定5—7个关键里程碑事件。每个里程碑都应包 含具体目标、完成标准和时间节点。使用甘特图呈现整体时间线。 4.0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单领域的巨大潜力,但其仍然处于发展阶段,存在一定局限性和优化 空间。未来,随着技术的不断进步和创新,DeepSeek R1 可能会在以下几个方面实现进一步的突破: 通用能力提升 解决语言混杂问题 目前,DeepSeek R1在函数调用、多轮 对话、复杂角色扮演和 JSON 输出等任 务中的能力不及 DeepSeek-V3。未来, DeepSeek计划探索如何利用长推理链 来增强在这些任务的表现。 优化提示工程 目 主要是”助手”角色,需要用户提供明确指令,无法自主完成复杂任务。 现有 AI 工具 难以跨多个子任务自动执行,仍需人工介入。 AI 自主任务规划与执行(AI Agent) AI 能够自主分解任务、规划步骤, 并利用外部工具(如API、数据库、 自动化流程)执行任务。 多 AI 代理协作 不同 AI 代理(市场分析 Agent、法律 审核 Agent、财务预测 Agent) 可协 同完成复杂任务,形成智能工作流。0 码力 | 85 页 | 8.31 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502政企、创业者必读政企、创业者必读 一张图读懂一堂DeepSeek课政企、创业者必读 AI给了一个比互联网更大的机会 互联网是连接平台,人工智能是生产力 互联网是赋能性技术,生产力属性较弱 人工智能既能单兵作战,也能外部赋能 互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型是真智能,是人工智能的重大拐点。你相不相信? 大模 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 业务流程自动化( A g e n t框架) 组织协同( 工作流) 人机交互 赋能个人和 企业员工 生产力提升 多模态 知识自动汇集,不流失 多模态数据处理和理解 非结构化文档处理和理解 搜索,辅助内部办公和外部客户服务 为业务大模型RAG做准备 内部知识管理 • 把企业内部的碎片化知识, 把专 家头脑中的经验转化为显性知识 管理起来, 如员工邮件、 文档文 件、 聊天记录、 工作记录等 工作流知识管理 1 外部情报分析 • 抓取外部情报, 例如行业报告、 市 场情报等 2 多模态处理 • 用大模型多模态能力把非结构化0 码力 | 76 页 | 5.02 MB | 5 月前3
人工智能安全治理框架 1.02.2 现实域安全风险 (a)诱发传统经济社会安全风险。人工智能应用于金融、能源、电信、交通、 民生等传统行业领域,如自动驾驶、智能诊疗等,模型算法存在的幻觉输出、 错误决策,以及因不当使用、外部攻击等原因出现系统性能下降、中断、失控 等问题,将对用户人身生命财产安全、经济社会安全稳定等造成安全威胁。 (b)用于违法犯罪活动的风险。人工智能可能被利用于涉恐、涉暴、涉赌、 涉毒等传统违法 生产关系的大幅改变,加速重构传统行业模式,颠覆传统的就业观、生育观、 教育观,对传统社会秩序的稳定运行带来挑战。 (c)未来脱离控制的风险。随着人工智能技术的快速发展,不排除人工 智能自主获取外部资源、自我复制,产生自我意识,寻求外部权力,带来谋求 与人类争夺控制权的风险。 4. 技术应对措施 针对上述安全风险,模型算法研发者、服务提供者、系统使用者等需从 训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelCMMLU. 40 PROMPT 文章:英雄广场(Heldenplatz)是奥地利首都维也纳的一个广场。在此曾发 生许多重要事件— 最著名的是1938年希特勒在此宣告德奥合并。英雄广场是 霍夫堡皇宫的外部广场,兴建于皇帝弗朗茨·约瑟夫一世统治时期,是没有完 全建成的所谓“帝国广场”(Kaiserforum)的一部分。其东北部是霍夫堡皇宫 的Leopoldinian Tract,东南方是新霍夫堡,西南方的内环路,将其与“城门 Burgtor)隔开。西北部没有任何建筑物,可以很好地眺望内环 路、国会大厦、市政厅,以及城堡剧院。广场上有2尊军事领袖的骑马像:欧 根亲王和卡尔大公。 根据上文回答下面的问题。 问题:英雄广场是哪个皇宫的外部广场? 答案:霍夫堡皇宫 问题:广场上有哪两位军事领袖的骑马像? 答案: Table 20 | An example of CMRC2018. PROMPT Passage: The median0 码力 | 52 页 | 1.23 MB | 1 年前3
清华大学 普通人如何抓住DeepSeek红利,最大限度维持职场 专业度。 如何使用DeepSeek攻克学习中的困难 “学习太难?DeepSeek带你‘开挂’逆袭! 场景1:课堂上突然跟不上了,怎么办 场景:数学课上,老师正在讲解“隐函数求导”,步骤写到第三行时突然跳过了中间推导,直接给出结果:“所 以这里的dy/dx=(-2x-y)/(x+3y²)”。你盯着白板上的公式一脸懵——前两步的链式法则展开去哪了?为什么分 母突然多了3y²? 场景1:课堂上突然跟不上了,怎么办 1.课堂当下(隐蔽求助) p 适用场景:课堂上随时快速跟进 p 操作技巧: Ø 在笔记软件中快速标注困惑点(如:“疑问:第二 步到第三步如何展开?”) Ø 输入精准问题: “隐函数求导例题:从方程x² + xy + y³ = 0推导 dy/dx,请展示完整的链式法则展开步骤,特别是分母 3y²的来源。” Ø 秒速获取步骤解析: 立即对照补全笔记,跟上老师进度。 2. 课间5分钟(深度追问) 适用场景:老师已下课,但10分钟后还有后续课程 p 操作技巧: Ø 追问细节: “为什么对y³求导会得到3y²·dy/dx而不是3y²?” Ø 让AI用类比解释: “请用‘水管流速’比喻说明隐函数求导中dy/dx的意 义。” Ø 生成记忆口诀: “把隐函数求导步骤编成顺口溜,包含‘遇y先写 dy/dx’等关键词。” 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek图解10页PDF型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek 好处 本地搭建 DeepSeek 三个比较实际的好处: • 本教程接入的是 DeepSeek 推理模型 R1,开源免费,性能强劲 • 本教程搭建方法0 码力 | 11 页 | 2.64 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告(图源:https://python.langchain.com/docs/get_started/introduction) �� LangChain 是一个帮助开发者使用 LLM 创建应用的开源框 架,它可以将 LLM 与外部数据源进行连接,并允许与 LLM 进行交互。 LangChain 于 2022 年 10 月作为开源项目推出,并于 2023 年 4 月注册成立公司,累计获得超过 3000 万美元的 投资,估值达到了0 码力 | 32 页 | 13.09 MB | 1 年前3
共 9 条
- 1













