积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    DeepSeek:从入门到精通 @新媒沈阳 团队 :余梦珑博士后 清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 意概念和传播策略有效转化为具体行动,确保活动的顺利开展和目标达成。请遵循 以下要求: 1. 执行摘要(300字内):概括整个执行方案的核心内容、主要目标和关键成 功因素。 2. 项目团队构成(300字内):列出核心项目团队成员,包括内部人员和外部 合作方。明确每个角色的主要职责和决策权限。 3. 里程碑规划(1200字内):设定5—7个关键里程碑事件。每个里程碑都应包 含具体目标、完成标准和时间节点。使用甘特图呈现整体时间线。 - 完成指标 5. 资源分配表(1000字内):创建一个资源分配矩阵,横轴为时间,纵轴为资源 类型(如人力、设备、预算)。标注每个阶段的资源需求高峰。 6. 跨部门协作流程(800字内): 设计2—3个关键的跨部门协作流程,如创意审批、 内容制作、媒体投放等。使用流程图呈现。 7. 预算明细(1000字内):提供一个详细的预算破解表,包括: - 各执行环节的具体支出 - 预留的应急资金比例
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    @新媒沈阳团队 、余梦珑博士后 DeepSeek:从入门到精通 2025年2月 清华大学 新闻学院 人工智能学院 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 意概念和传播策略有效转化为具体行动,确保活动的顺利开展和目标达成。请遵循 以下要求: 1. 执行摘要(300字内):概括整个执行方案的核心内容、主要目标和关键成 功因素。 2. 项目团队构成(300字内):列出核心项目团队成员,包括内部人员和外部 合作方。明确每个角色的主要职责和决策权限。 3. 里程碑规划(1200字内):设定5—7个关键里程碑事件。每个里程碑都应包 含具体目标、完成标准和时间节点。使用甘特图呈现整体时间线。 - 完成指标 5. 资源分配表(1000字内):创建一个资源分配矩阵,横轴为时间,纵轴为资源 类型(如人力、设备、预算)。标注每个阶段的资源需求高峰。 6. 跨部门协作流程(800字内): 设计2—3个关键的跨部门协作流程,如创意审批、 内容制作、媒体投放等。使用流程图呈现。 7. 预算明细(1000字内):提供一个详细的预算破解表,包括: - 各执行环节的具体支出 - 预留的应急资金比例
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    DeepSeek+DeepResearch 让科研像聊天一样简单 北京航空航天大学 高研院 助理教 授 清华大学新闻学院与人工智能学 院双聘教授 沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 • 故事化数据呈现:借助o3mini将数据以 故事的形式呈现,增强数据的可读性和吸引力, 大家有空还可以对我的提示词进行改进,围绕四个方面。我们需要建立 一套研究提示词集。 AI for research 提示词集。 三 效果如何? 元知AI综述工具 元知是国内由清华、北航专家团队研发的一个AI学术平台,目前其AI综述生成工具已开放使用,能够帮助用户从海 量文献中提取核心信息,通过自然语言处理算法,实现从文献梳理到观点提取到研究评论的一键式全自动生成。 产品 概况 功能亮点
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 @新媒沈阳 团队 : 陶炜博士生 普通人如何抓住DeepSeek红利 p Deepseek是什么? p Deepseek能够做什么? ——在工作、学习、生活和社会关系中解决问题 p 如何提问?让AI一次性生成你想要的东西 卷不动了?DeepSeek帮你一键“躺赢”! 学习太难?DeepSeek带你“开挂”逆袭! 通过快速、准确的响应,客户会感受到你的专业性和效率,从而提升对你的信任和满意度。 场景3:日常客户沟通与问题反馈处理 场景4:项目中急需请假 如何开口 场景:你负责的项目正处于关键阶段(如产品上线前一周),团队每天加班。此时,家中老人突发中风住院, 你需要请假3天回老家处理。你担心领导认为你“临阵脱逃”,也怕耽误项目进度,但家人需要你立刻回去。你 坐在工位上反复措辞,始终不敢敲开领导办公室的门。 场景4:项目中急需请假 避免:“可能”“尽量”等模糊词汇,直接说“我能做到XX”。 • 证明可靠性:提前整理好交接文档(用AI辅助检查遗漏),主动降低领导风险感知。 • 人性化:适当流露脆弱(如“这次确实很难兼顾”),但强调“不愿让团队受影响”。 • 通过DeepSeek的理性分析和话术优化,你能在保护家庭需求的同时,最大限度维持职场 专业度。 如何使用DeepSeek攻克学习中的困难 “学习太难?DeepSeek带你‘开挂’逆袭!
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    通用大模型不了解企业内部业务情况、行业情况 58政企、创业者必读 知识管理是大模型更 懂企业的基础 59 解决企业应用,需要打造专业大模型 要解决四个关键基础 以业务大模型为基础, 打造自主工作的数字 员工和AI团队 实现多个Agent、多个 数字化系统、多个组织 之间的协同 知识 管理 融合 工作流 业务大模型 打造 构建 智能体 基于政府企业场景和专业 知识,利用数据工场、知 识工场、模型工场,训练 基于推理能力制定计划,在过程中 反思 工具 搜索、实时信息、数据请求、业务 系统 62政企、创业者必读 智能体与企业数字化系统的关系 软件 工具 数据 IT系统 业务系统 员工/岗位 组织团队 业务流程 核心业务 智能体 企业要躬身入局,以自身业务驱动,打造专有智能体 63政企、创业者必读 智能体在企业应用的七层能力 与大模型直接聊天,输入简单提示词,无Agent能力 具备简单GUI交互界面,可进行一些设置 用内部提示词进行角色设定 具备GUI界面的多个步骤的工具软件 L2 L1 L0 可执行复杂的规划、推理、分解、预测流程的工作流 与企业业务流程、组织、系统打通 L3 L5 L4 多个Agent的相互协作 L6 64政企、创业者必读 示例:斯坦福医疗预约中心的AI化改造 智能体应用案例:定义角色、分解流程 社区医生手工填写患者病历 并传真到斯坦福预约中心 传统人工预约流程 AI辅助预约流程
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    DeepSeek如何赋能职场应用? ——从提示语技巧到多场景应用 中央民族大学 新闻与传播学院 清华大学 @新媒沈阳 团队 向安玲 Innovator For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot 增强人类的创造力 和创新能力 Organization •承担整个组织的 功能,独立管理 并执行复杂的操 作 • 致力于人机协同和人机共生领域的世界级团队,专注于打造能够驾驭AI、熟悉AI并实现人类与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤 00% 250.00% 300.00% 350.00% 杭州 深圳 成都 苏州 无锡 上海 青岛 厦门 宁波 北京 大模型A 大模型B 大模型C 大模型D 如何利用DeepSeek实现人机高效协作? 基本操 作技巧 人机协 作意识 能动 意识 边界 意识
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    坚持应用牵引。坚持企业主体、市场导向,面向行业应 用需求,强化创新成果迭代和应用场景构建,协同推进人工 3 智能与重点行业融合应用。 坚持产业协同。加强人工智能全产业链标准化工作协 同,加强跨行业、跨领域标准化技术组织的协作,打造大中 小企业融通发展的标准化模式。 坚持开放合作。深化国际标准化交流与合作,鼓励我国 企事业单位积极参与国际标准化活动,携手全球产业链上下 游企业共同制定国际标准。 三、建设思路 (一)人工智能标准体系结构 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和 10 智能体基本功能、应用架构等技术要求,包括智能体强化学习、 多任务分解、推理、提示词工程,智能体数据接口和参数范围, 人机协作、智能体自主操作、多智能体分布式一致性等标准。 10. 群体智能标准。规范群体智能算法的控制、编队、感知、 规划、决策、通信等技术要求和评测方法,包括自主控制、协同 控制、任务规划、路径规划、协同决策、组网通信等标准。 重点行业智能升级标准。围绕原材料行业,开展大模型 畅联产线数据、优化在线监测调控和工艺改进等标准研制。围绕 消费品行业,开展需求预测、个性化定制等标准研制。围绕装备 行业,研制智能装备感知、交互、控制、协作、自主决策等标准。 (六)行业应用标准 开展智慧城市、科学智算、智慧农业、智慧能源、智慧环保、 智慧金融、智慧物流、智慧教育、智慧医疗、智慧交通、智慧文 旅等领域标准研究。 (七)安全/治理标准
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 人工智能安全治理框架 1.0

    人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人 工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    的冷启动阶段使用了 SFT。 图 8: Interim reasoning model 训练方法 大规模推理导向的强化学习训练,必不可少的就是推理数据,手动标注就 太繁琐了,成本昂贵,所以 DeepSeek 团队为了解决这个问题,训了一个 R1-Zero 模型,这是核心创新。 R1-Zero 完全跳过 SFT(监督微调)阶段,直接使用强化学习训练,如下 图9所示,基于 V3,直接使用强化学习开训: 图
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学DeepResearch科研普通通人普通人如何抓住红利周鸿祎演讲我们带来创业机会360202502第二赋能职场国家人工智能人工智能产业综合标准标准化体系建设指南2024安全治理框架1.0DeepseekR1本地部署完全手册图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩