积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部中文(简体)(11)中文(简体)(2)

格式

全部PDF文档 PDF(12)TXT文档 TXT(1)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 能力图谱 诗歌创作 语音识别 指令理解 方案规划 实体识别 l 文本创作 文章/故事/诗歌写作 营销文案 、广告语生成 社交媒体内容(如推文 、帖子) 剧本或对话设计 l 摘要与改写 长文本摘要(论文 、报告) 文本简化(降低复杂度) 多语言翻译与本地化 代码注释 、文档撰写 文本生成 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) • 意图识别(客服对话、用户查 询) • 实体提取(人名、地点、事件) 知识推理 • 知识推理 • 逻辑问题解答(数学、常识 推 理 ) • 因果分析(事件关联性) 自然语言理解与分析 文本分类 • 文本分类 • 主题标签生成(如新闻分 类) • 垃圾内容检测
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个 够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA 和 Google Cloud TPU 均是此类工具。 这类工具通常由开源社区支持和维护,提供了灵活、可扩展的工具和 库来构建和训练大型机器学习模型,如 TensorFlow 和 PyTorch 和 Hugging Face Transformers 等。 TensorFlow 架构图 (图源:https://www
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 普通人学AI指南

    上下文窗口大小决定了模型在回答问题或生成文本时可以利用的上下文范 围。窗口越大,模型就能处理越长的上下文,对理解长文本内容非常重要。 较大的窗口允许模型处理更长的文本片段,从而提高在长文本任务中的表 现,如长篇对话、文档生成和分析等。 1.4.2 单位 B 和 T 在 AI 大模型中,常用的两个单位是 B 和 T。 B(十亿,Billion):在英文里是 Billion 的缩写,表示十亿。对于 AI 大模型 来说,B 一般用于描述模型的参数数量。例如,具有 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 6 Figure 3: AI 问答工具 ChatGPT 经过特别训练,可以理解和生成人类语言,从而在多种应用场景中提 种应用场景中提 供辅助,包括聊天机器人、写作辅助、信息查询等。 2.1.2 Claude Claude 是 Anthropic 公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容、提取信息、总结、翻译、编码、解决数学问题等多种任务。这些模型 在多种语言
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    下图4所示: 图 4: Ollama 软件启动 deepseek-r1 界面 1.3 DeepSeek 本地运行使用演示 基于上面步骤搭建完成后,接下来提问 DeepSeek 一个问题:请帮我分析 Python 编程如何从零开始学习?,下面是它的回答,首先会有一个 think 标签,这里面嵌入的是它的思考过程,不是正式的回复: 图 5: deepseek-r1 回复之思考部分 等我们看到另一个结束标签 Scaling Laws(扩展规律)的指导和模型自身架构的优势。 Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多 元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提 取出通用的知识。而 Transformer 这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2 力机制(Self-Attention):模型在处理文本时,会自动关注句子中的重要单 词,理解不同词语间的联系。2. 多头注意力(Multi-Head Attention):使用 多个注意力头同时分析不同的语义信息,使得模型的理解能力更强。3. 前 馈神经网络(FFN):非线性变换模块,提升模型的表达能力。4. 位置编码 (Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • text文档 00 Deepseek官方提示词

    请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 纲构建方法。可根据不同的主题需求,如商业文案、文学创作、学术论文等,生成具有针对性、逻辑性和条理性 USER 假设诸葛亮死后在地府遇到了刘备,请模拟两个人展开一段对话。 5. 结构化输出 :将内容转化为 Json,来方便后续程序处理 SYSTEM 用户将提供给你一段新闻内容,请你分析新闻内容,并提取其中的关键信息,以 JSON 的形式输出,输出的 JSON 需遵守以下的格式: { "entiry": <新闻实体>, "time": < 新闻时间,格式为 YYYY-mm-dd 美国的饮食还习惯么。 10. 内容分类:对文本内容进行分析,并对齐进行自动归类 SYSTEM #### 定位 - 智能助手名称 :新闻分类专家 - 主要任务 :对输入的新闻文本进行自动分类,识别其所属的新闻种类。 #### 能力 - 文本分析 :能够准确分析新闻文本的内容和结构。 - 分类识别 :根据分析结果,将新闻文本分类到预定义的种类中。 #### 知识储备
    0 码力 | 4 页 | 7.93 KB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化,
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    智能语音标准。规范前端处理、语音处理、语音接口、 数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全 双工交互、语音大模型等标准。 6. 计算机视觉标准。规范图像获取、图像/视频处理、图像 内容分析、三维计算机视觉、计算摄影学、跨媒体融合等技术要 求和评价方法,包括功能、性能、可维护性等标准。 7. 生物特征识别标准。规范生物特征样本处理、生物特征 数据协议、设备或系统等技术要求,包括生物特征数据交换格式、 主控制、协同 控制、任务规划、路径规划、协同决策、组网通信等标准。 11. 跨媒体智能标准。规范文本、图像、视频、音频等多模 态数据处理基础、转换分析、融合应用等方面的技术要求,包括 数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展 等标准。 12. 具身智能标准。规范多模态主动与交互、自主行为学习、 仿真模拟、知识推理、具身导航、群体具身智能等标准。 (四)智能产品与服务标准
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 ≥890GB 2*XE9680(16*H20 GPU) DeepSeek-R1-Distill- 2. 下载并合并模型分⽚: 3. 安装Ollama: 4. 创建Modelfile: 5. 运⾏模型: 4. 性能调优与测试 GPU利⽤率低:升级⾼带宽内存(如DDR5 5600+)。 扩展交换空间: 六、注意事项与⻛险提示 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。 671B模型:需8xH100集群,仅限超算中⼼部署。 2
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学普通通人普通人如何抓住红利开源中国2023模型LLM技术报告AI指南图解10PDF00Deepseek官方提示DeepResearch科研国家人工智能人工智能产业综合标准标准化体系建设2024R1本地部署完全手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩