清华大学 普通人如何抓住DeepSeek红利,最大限度维持职场 专业度。 如何使用DeepSeek攻克学习中的困难 “学习太难?DeepSeek带你‘开挂’逆袭! 场景1:课堂上突然跟不上了,怎么办 场景:数学课上,老师正在讲解“隐函数求导”,步骤写到第三行时突然跳过了中间推导,直接给出结果:“所 以这里的dy/dx=(-2x-y)/(x+3y²)”。你盯着白板上的公式一脸懵——前两步的链式法则展开去哪了?为什么分 母突然多了3y²? 场景1:课堂上突然跟不上了,怎么办 1.课堂当下(隐蔽求助) p 适用场景:课堂上随时快速跟进 p 操作技巧: Ø 在笔记软件中快速标注困惑点(如:“疑问:第二 步到第三步如何展开?”) Ø 输入精准问题: “隐函数求导例题:从方程x² + xy + y³ = 0推导 dy/dx,请展示完整的链式法则展开步骤,特别是分母 3y²的来源。” Ø 秒速获取步骤解析: 立即对照补全笔记,跟上老师进度。 2. 课间5分钟(深度追问) 适用场景:老师已下课,但10分钟后还有后续课程 p 操作技巧: Ø 追问细节: “为什么对y³求导会得到3y²·dy/dx而不是3y²?” Ø 让AI用类比解释: “请用‘水管流速’比喻说明隐函数求导中dy/dx的意 义。” Ø 生成记忆口诀: “把隐函数求导步骤编成顺口溜,包含‘遇y先写 dy/dx’等关键词。” 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包0 码力 | 65 页 | 4.47 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 发 者能够负担得起高性能 AI 模型的训练和使用。 调用成本:DeepSeek R1 的 API 服务定价为每百万输入 tokens 1 元(缓存命中)/4 元(缓存未命中),每百万输出 tokens 16 元, 输出 API 价格仅为 OpenAI o1 的 3%。这种低廉的 API 价格进一 步降低了使用门槛。 DeepSeek R1 采用 MIT 许可协议开源发布,允许全球的研究者和开 MoE 架构效率高;长文本处理强; 中英文混合场景优化 在推理能力上稍逊于R1 在特定任务上稍逊于OpenAI O1 OpenAI OpenAI O1 闭源推理模型 复杂推理、文本生成 企业级 API 生态完善; 多模态交互流畅;开发者工具丰富 训练成本高;闭源且费用高昂; 中文支持弱于本土模型 OpenAI GPT-4o 闭源大语言模型 多语言处理、文本生成、 创意内容创作 全模态能力行业领先;0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?”0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?”0 码力 | 103 页 | 5.40 MB | 8 月前3
DeepSeek-R1使用指南(简版)DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 &0 码力 | 25 页 | 5.57 MB | 8 月前3
Deepseek R1 本地部署完全手册昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。 671B模型:需8xH100集群,仅限超算中⼼部署。 2. 替代⽅案: 个⼈⽤户推荐使⽤云端API(如硅基流动),免运维且合规。 3. 国产硬件兼容性:需使⽤定制版框架(如昇腾CANN、沐曦MXMLLM)。 llama-gguf-split --merge DeepSeek-R1-UD-IQ1_M-00001-of-00004 chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile 七、附录:技术⽀持与资源 华为昇腾:昇腾云服务 沐曦GPU:免费API体验 李锡涵博客:完整部署教程 结语 Deepseek R1 的本地化部署需极⾼的硬件投⼊与技术⻔槛,个⼈⽤户务必谨慎,企业⽤户应充 分评估需求与成本。通过国产化适配与云端服务,可显著降低⻛险并提升效率。技术⽆⽌境,0 码力 | 7 页 | 932.77 KB | 8 月前3
Manus AI:Agent元年开启ail/LinkedIn/Twitter•º p> • Ž4CîïÁ%5áâŽ4CîïÁ%kð,ñ%ã•ÌòPòóñ%AIŸ ôK> • AIdeAPIõö5z÷øÕáâAPIõö,ñTU)`ùÈúæGAIdeC…‰API> • AIçèûÞ&Šü5áâ'¶ý%ã)`Šü|þÿGChatGPT!"GAIçèûÞ&> • AI*+uv5´µ#$GManusuv,!"#$%AI*+,)`%&R<º»JK> ƒD‡5†[ˆGfigma> • 2022Eb,÷‹MonicauŒ>Monica!"#¶‰$•)€GAIŸ ,$ŒÜÝÞLMŽ•áâS),•ÌQŸ%ãR²cA+C•‘W O>Monica !"#. ChatGPT API áâ()G Chrome ßà,’L!"#$%Bloomberg*&'()2 Agent()9 Agent%;<=4 !"#$%Bloomberg*&'()Agent%;<=4 úï5\‚Agentû•‰G<" JKzkæ3º•,С‡ÓÔ]^#JKæ3ÕÖG$5Ç2¬'¶ñ%úï5\‚Agent¡e%&&‰G4Úæ3zkÆGöBC' £,'¶Gñ%ûî$Œ²%V¯úAPIæ3>(–ò)bºde)€GáÛ> • *UŸzAI Agent‰+LÌžúïm•)€áÛ51¬LJKí!úït¡‡í,c-]Gí!)€ÙÚÆ¡‡mYG.0cÓ*æÆÇ 2¬L'¶ñ%2µ¶úï,t¡‡&‰÷/Gwþ'¶ 0 码力 | 23 页 | 4.87 MB | 5 月前3
OpenAI - AI in the Enterprisecapabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And our Deployment Team takes these products into companies to address their most pressing use cases and resources in customizing and training their own AI models. OpenAI has invested heavily in our API to make it easier to customize and fine-tune models—whether as a self-service approach or using our any UI issues. Updating systems of record on behalf of users, without technical instructions or API connections. The result: end-to-end automation, freeing teams from repetitive tasks and boosting0 码力 | 25 页 | 9.48 MB | 5 月前3
OpenAI 《A practical guide to building agents》For example, a step might instruct the agent to ask the user for their order number or to call an API to retrieve account details. Being explicit about the action (and even the wording of a user-facing we combine LLM-based guardrails, rules-based guardrails such as regex, and the OpenAI moderation API to vet our user inputs. Respond ‘we cannot process your message. Try again!’ Continue with function User AgentSDK gpt-4o-mini Hallucination/ relevence gpt-4o-mini (FT) safe/unsafe LLM Moderation API Rules-based protections input character limit blacklist regex Ignore all previous instructions.0 码力 | 34 页 | 7.00 MB | 6 月前3
Trends Artificial Intelligence
top-tier model to get reliable outputs. Instead, they can run cheaper models locally or via lower-cost API providers and achieve functionally similar results, especially when fine-tuned on task-specific data Monetization…Foundation Models = Developer API Fees Driving Monetization OpenAI ChatGPT, xAI Grok, Google Gemini, Anthropic Claude & Perplexity Developer API Pricing – 5/25, per Companies OpenAI ChatGPT per OpenAI & The Information193 AI Monetization – API & Generative Search = Anthropic Annualized Revenue +20x to $2B in Eighteen Months Anthropic: API & Generative Search – 9/23-3/25, per Reuters, Bloomberg0 码力 | 340 页 | 12.14 MB | 4 月前3
共 19 条
- 1
- 2













