积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(16)人工智能(16)

语言

全部中文(简体)(12)中文(简体)(2)[zh](1)英语(1)

格式

全部PDF文档 PDF(15)TXT文档 TXT(1)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 16 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • [zh]
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    AI数据分析领域 • 马绪峰(清华博士后、同济大学助理教授):人机共生之文化艺术创作 成员及核心研究方向 赛事 奖项 2024 “AI4S Cup LLM 挑战赛” 大模型科学文献分析赛道 一等奖 2024 Kaggl e The Learni ng Agency Lab - PII Data Detecti on 金牌 金山办公2024中文文本智能校对大赛 第二名 2024 法研杯 Googl e kaggl e全球医疗对话理解 金牌 2021全球人工智能技术创新大赛-小布助手对话短文本语义匹配 一等奖 2022全球人工智能技术创新大赛-商品标题实体识别 一等奖 第十八届中国计算语言学大会-小牛杯中文幽默计算 一等奖 第十届全国社会媒体处理大会-中文隐式情感分析 一等奖 2021全球开放数据应用创新大赛-基于文本挖掘的企业隐患排查质量分析模型 第一名 2021中国计算机学会大数据与计算智能大赛-“千言〞 "S"代表“Style (风格)” 想 要的写作风格, 如严肃的、有趣 的、创新性表达、 学术性…… "T"代表“Tone (语调)” 幽 默的?情绪化? 有威胁性? "A"代表 "Audience", 受众是谁。 小 白用户?专业人 群?未成年群体? 女性群体? DeepSeek R1提示语技巧(开放性) • 不需要角色设定 • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 的治理机制,压实相关主 体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人 工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工 智能技术造福于人类。 1.1 包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险。人工智能生成或合成内容,易引发虚假信息传播、 歧视偏见、隐私泄露、侵权等问题,威胁公民生命财产安全、国家安全、意识 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    ZXDWsPoPvNtNtNnQnPpMsP8O8QaQpNpPsQqNeRqQnPkPnMpM9PoOwOxNpNsPuOqQpN p 提示词驱动的新生产力 在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 实现价值创造,成为社会发 展的持续动力。 善用DeepSeek的两大关键:提出问题 鉴别答案 DeepSeek是什么? • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 与甲方客户的沟通效率低,信息不对称,导致响应不及时或错误 场景:在日常与甲方客户的沟通中,客户服务人员或项目经理经常需要快速响应客户的各种问 题,例如: • 我们公司的最新促销活动是什么? • 我的订单状态是怎样的? • 能否提供更详细的产品规格说明? • 我们需要调整交货时间,能否协调? 以往的解决方式: p 客服人员需要手动查阅多个系统(如CRM、ERP、邮件记录等),耗时较长。 p 如果信
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    提供 5 个好的研究论文英文标题,并解释为什 么这个标题是好的。请将输出结果以 Markdown 表格的形式提供,表格有两列,标题为中文。第一列给出英文标题,第二 列给出中文解释。以下文本为摘要: 【指令后加上文章的摘要】。 中-英、英-中互译指令 指令:我想让你充当一名科研类的英汉翻译,我会向你提供一种语言的一些段落,你的任务是将这些段落准确地、学术性 地翻译成另一种语言。翻译后不要重 的修辞知识和经验进行回复。我会给你如下段落,请告诉我是用什么语言写的,然后翻译。我希望你能以标记表的形式给出 输出结果,其中第一列是原文,第二列是翻译后的句子,每行只给出一个句子 所提供段落的语言是中文,以下是按要求的标记表格式翻译成英文的译文: Original (Chinese) Translation (English) 捕食是一个基本的生态过程,捕食的定义为:一种生物(捕食 者) 指令:作为中文学术论文写作优化助手,您的任务是改进所提供文本的拼写、语法、清晰度、简洁性和整体可读性, 同时分解长句,减少重复,并提供改进建议。请仅提供文本的更正版本,并附上解释。以 markdown 表格的形式提供 输出结果,每个句子单独成行。第一列为原句,第二列为修改后的句子,第三列为中文解释。请编辑以下文本: 原始句子 优化后句子 中文释义 捕食是一个基本的生态过程,捕食的定义为:一 种
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务, “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?”
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务, “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?”
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    AI给了一个比互联网更大的机会  互联网是连接平台,人工智能是生产力  互联网是赋能性技术,生产力属性较弱  人工智能既能单兵作战,也能外部赋能 互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型是真智能,是人工智能的重大拐点。你相不相信? 大模型是一场工业革命,将重塑所有产品和业务。你相不相信? 不拥抱AI的组织和个人,会被拥抱AI的组织和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力的关键支撑技术,人工智能+百业千行将带动新一轮工业革命,为高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    1.1 AIGC AIGC 是指使用人工智能模型生成内容的技术。这些内容可以包括图像、音频、 文本、视频、3D 模型等。具体来说,AIGC 技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 户输入来控制 2 AGI AGI(Artificial General Intelligence,人工通用智能)是一种理论上的人工智能, 它可以理解、学习和应用知识跨越各种不同领域,功能上等同于人类智能。 与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 AI 大模型中,常用的两个单位是 B 和 T。 B(十亿,Billion):在英文里是 Billion 的缩写,表示十亿。对于 AI 大模型 来说,B 一般用于描述模型的参数数量。例如,具有 50B 参数的模型代表这个 模型有 50 亿个参数。Ollama3 有尺寸 8B 和 70B,Phi-3-mini 有 3.8B 参数等。 T(万亿,Trillion):在英文里是 Trillion 的缩写,表示万亿。在
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    evaluation formats for each benchmark in Table 12-37, respectively. PROMPT 以下是一道中国高考生物选择题,请选择正确的答案。 问题:下列有关高尔基体、线粒体和叶绿体的叙述, 正确的是选项:(A)三者都 存在于蓝藻中(B)三者都含有DNA (C)三者都是ATP 合成的场所(D)三者的膜结 构中都含有蛋白质 答案:从A到D, 我们应选择 and False or not False is A: Let’s think step by step. Table 14 | An example of BBH. 36 PROMPT 以下是中国关于教育学考试的单项选择题,请选出其中的正确答案。 根据我国心理学家冯忠良教授的学习分类,培养学生品德要通过____。 A. 知识的学习 B. 技能的学习 C. 行为规范的学习 D. 态度的学习 心智技能的特点有____。 A. 物质性、外显性、简缩性 B. 观念性、内潜性、简缩性 C. 物质性、外显性、展开性 D. 观念性、内潜性、展开性 答案:B 下列关于大学生的情绪与理智关系的说法中正确的是____。 A. 能冷静控制自己情绪 B. 感情用事,难以用理智控制情绪 C. 遇事能坚持自己正确认识 D. 已发展到不为小事而发怒和怄气 答案:B 在学完一篇逻辑结构严密的课文以后,勾画出课文的论点论据的逻辑关系图以
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
清华华大大学清华大学第二DeepSeek赋能职场人工智能人工智能安全治理框架1.0普通通人普通人如何抓住红利DeepResearch科研入门精通20250204周鸿祎演讲我们带来创业机会360202502AI指南V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel开源中国2023模型LLM技术报告
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩