国家人工智能产业综合标准化体系建设指南(2024版)等标准。 4. 营销服务标准。围绕营销服务效率提升,研制智能客服、 数字人、商品三维模型标准,以及用户体验等标准。 5. 运营管理标准。围绕运营管理智能化能力提升,研制相 关供应链管理、数据管理、风险管理等标准。 12 6. 重点行业智能升级标准。围绕原材料行业,开展大模型 畅联产线数据、优化在线监测调控和工艺改进等标准研制。围绕 消费品行业,开展需求预测、个性化定制等标准研制。围绕装备0 码力 | 13 页 | 701.84 KB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单里面会有些冗余信息,可以删除回复中的冗余信息。另外大家有空还可以对我的提示词进行改进,围绕四个方面。我们需要建立 一套研究提示词集。 AI for research 提示词集。 三 效果如何? 元知AI综述工具 元知是国内由清华、北航专家团队研发的一个AI学术平台,目前其AI综述生成工具已开放使用,能够帮助用户从海 量文献中提取核心信息,通过自然语言处理算法,实现从文献梳理到观点提取到研究评论的一键式全自动生成。 台的优势在于其广泛的数据源和智能化的 文献推荐系统,支持跨学科的文献分析。 产品概况 功能亮点 功能亮点 免费开放使用:所有用户均可免费访问,注册后可直接 使用。 海量学术资源整合:包含约1.8亿条学术元数据,涵盖 科技论文、专利文献、科学数据等多个类别。超过 8000万篇资源可直接获取全文,包括2122万篇论文全 文和5878万篇专利全文。 无数据检索:以现有真实数据库作为支撑,通过关键词 scholar.cn/ 输入关键词:进入官网后,在搜索框键入关键词进行文献检索。 选取文章:勾选想要分析的20篇文献。 综述生成:点击生成综述,等待2-3分钟即可下载综述报告。 元知AI综述工具官网:https://yuanzhi.zeelin.cn/#/ 选择版本:根据需求选择工具的四个版本,包括基础版、增强版、专业版(单图)、专业版(双图)。 文献导入:用户可从现有0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)DeepSeek:从入门到精通 @新媒沈阳 团队 :余梦珑博士后 清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界0 码力 | 103 页 | 5.40 MB | 8 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Model班 共 捐 款8000元 , 其 中 一 班 捐 款1500元 , 二 班 比 一 班 多 捐 款200元 , 三 班 捐 款1600元,四班与五班捐款数之比是3:5.四班捐款多少元? A: 一 班 捐 款1500元 , 而 二 班 比 一 班 多 捐200元 , 所 以 二 班 捐 款1500+200=1700元 , 又 知 道 六 年 级 五 个 班 一 共 捐 款8000元 , 所 以 四 班 班 和五班捐款之和= 一共捐款- 一班和二班和三班捐款之和,即8000-1500- 1700-1600=3200元,而题目说四班与五班捐款数之比是3:5,则四班捐款 了3200/(3+5)*3=1200元。所以答案是:1200。 Q: 小俊在东西大道上跑步,若规定向东为正。他先向东跑了800米,然后又跑 了一段之后,他位于出发点西边100米处,小俊第二段跑了多少米? A: 小俊第二段跑完后位于出发点西边,所以第二段应该是向西跑,第二0 码力 | 52 页 | 1.23 MB | 1 年前3
清华大学 普通人如何抓住DeepSeek红利清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 @新媒沈阳 团队 : 陶炜博士生 普通人如何抓住DeepSeek红利 p Deepseek是什么? p Deepseek能够做什么? ——在工作、学习、生活和社会关系中解决问题 p 如何提问?让AI一次性生成你想要的东西 卷不动了?DeepSeek帮你一键“躺赢”! 学习太难?DeepSeek带你“开挂”逆袭! 激发模型深层推理 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺, 且 预算控制在2000元内 。 ” 兼顾目标与细节 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么 ”“如何 ”) 探索性问题 、需模型解 释逻辑 “为什么选择梯度下降法解 语境理解 深入分析任务背景和隐含需求 考虑文化 、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活 、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek图解10页PDFqwen:7b, llama:8b,这里的 1.5b, 7b、8b 代表什么?b 是英文的 billion,意思是十亿,7b 就是 70 亿,8b 就 是 80 亿,70 亿、80 亿是指大模型的神经元参数(权重参数 weight+bias)的 总量。目前大模型都是基于 Transformer 架构,并且是很多层的 Transformer 结构,最后还有全连接层等,所有参数加起来 70 亿,80 模型之所以能基于大量多样化的数据集进行训练,并最终“学得好”,核 心原因之一是 Scaling Laws(扩展规律)的指导和模型自身架构的优势。 Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多 元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提 取出通用的知识。而 Transformer 这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语0 码力 | 11 页 | 2.64 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告模型)、智谱 AI(GLM 大模型)、中科院 (紫东太初大模型)、百川智能(百川大模 型)、商汤(日日新大模型)、MiniMax (ABAB 大模型)、上海人工智能实验室(书 生通用大模型)、腾讯(混元大模型,9月15 日通过)。 18 / 32 大模型应用现状:知名大模型应用 LLM 已经在多种应用场景中得到了应用,包括文本生成、机器翻译、问答、自然语言推理 等。 以 为代表的文本生成应用,0 码力 | 32 页 | 13.09 MB | 1 年前3
共 8 条
- 1













