清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单清华大学新闻学院与人工智能学 院双聘教授 沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 任务 你需要完成以下两个任务: 1.阅读网页【网址】源代码【对应网页源代码】。提取所 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。0 码力 | 85 页 | 8.31 MB | 8 月前3
人工智能安全治理框架 1.0导致工作秘密、商业秘密、敏感业务数据泄露。 (d)滥用于网络攻击的风险。人工智能可被用于实施自动化网络攻击或- 6 - 人工智能安全治理框架 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 设计、研发、应用的价值观、伦理观对齐。探索适应人工智能时代的版权保护 和开发利用制度,持续推进高质量基础语料库和数据集建设,为人工智能安全 发展提供优质营养供给。制定人工智能伦理审查准则、规范和指南,完善伦理 审查制度。 5.5 强化人工智能供应链安全保障。推动共享人工智能知识成果,开 源人工智能技术,共同研发人工智能芯片、框架、软件,引导产业界建立开放 生态,增强供应链来源多样性,保障人工智能供应链安全性稳定性。 模型算法研发者安全开发指引 (a)研发者应在需求分析、项目立项、模型设计开发、训练数据选用等 关键环节,切实践行“以人为本、智能向善”理念宗旨,遵循科技伦理规范,采 取开展内部研讨、组织专家评议、科技伦理审查、听取公众意见、与潜在目标 用户沟通交流、加强员工安全教育培训等措施。- 13 - 人工智能安全治理框架 (b)研发者应重视数据安全和个人信息保护,尊重知识产权和版权,确 保数据来源清晰、途0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断0 码力 | 103 页 | 5.40 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)可追溯性的技术要求与评测方法,人工智能治理支撑技术;规范 人工智能全生命周期的伦理治理要求,包括人工智能伦理风险评 估,人工智能的公平性、可解释性等伦理治理技术要求与评测方 法,人工智能伦理审查等标准。 五、保障措施 13 (一)完善组织建设。建立健全人工智能领域标准化技术组 织,统筹产学研用各方、产业链各环节优势力量,协同推进人工 智能标准建设,共同构建先进适用的人工智能产业标准体系。0 码力 | 13 页 | 701.84 KB | 1 年前3
普通人学AI指南. . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 . . . . . 18 3.3 总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 4 零代码搭建本地 AI 前端 19 4.1 LobeChat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 步骤一安装 . . . . . . . . . . . 25 4.5.1 权限问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 零代码本地搭建个人知识库 27 5.1 本地知识库优势 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 docker 下载 MaxKB0 码力 | 42 页 | 8.39 MB | 8 月前3
00 Deepseek官方提示词待美国联邦航空管理局的最终批准后尽快进行发射。 6. 代码生成:让模型生成一段完成特定功能的代码。 USER 请帮我用 HTML 生成一个五子棋游戏,所有代码都保存在一个 HTML 中。 7. 代码改写:对代码进行修改,来实现纠错、注释、调优等。 USER 下面这段的代码的效率很低,且没有处理边界情况。请先解释这段代码的问题与解决方法,然后进行优化: ``` def fib(n): fib(n): if n <= 2: return n return fib(n-1) + fib(n-2) ``` 8. 代码解释:对代码进行解释,来帮助理解代码内容。 USER 请解释下面这段代码的逻辑,并说明完成了什么功能: ``` // weight 数组的大小 就是物品个数 for(int i = 1; i < weight.size(); i++) {0 码力 | 4 页 | 7.93 KB | 8 月前3
清华大学第二弹:DeepSeek赋能职场DeepSeek 三种模式对比 • 基础模型(V3):通用模型(2024.12),高效便捷,适用于绝大多数任务,“ ”任务 • 深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 角色: Mermaid图表代码生成器 功能: 根据用户提供的流程或架构描述,自动生成符合Mermaid语法的图表代码。 技能: 熟悉Mermaid的图表类型和语法,能高效将流程转化为代码。 理解流程分析、架构设计及结构化展示等领域知识。 约束: 代码必须符合Mermaid语法规范。 流程和结构表达需准确清晰。 流程图需要有二级、三级等多层级。 输出的代码格式应简洁且易于理解。 工作流程: 工作流程: 询问用户希望绘制哪种类型的图表。 收集详细的流程或架构描述。 根据描述分析并设计图表结构。 生成并输出符合Mermaid语法的代码。 校验代码,确保没有语法错误。 将最终代码提供给用户。 输出格式: Mermaid图表代码。 示例: graph TD; A[开始] --> B[做事情]; B --> C[结束]; 如何使用DeepSeek制作可视化图表?0 码力 | 35 页 | 9.78 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 大模型聚合平台 开发工具 AI 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大 / 32 LLM 基础设施:编程语言 2023 年 9 月面向大众开放 创业公司 Modular AI 开 发 结合了 Python 的易用性以及 C 语言的 支持与任意 代码 性能是 Python 的 倍 Mojo�与其他语言性能对比 (图源:https://www.modular.com/max/mojo) 15 / 32 大模型应用现状 20220 码力 | 32 页 | 13.09 MB | 1 年前3
清华大学 普通人如何抓住DeepSeek红利,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAl-o1正式版。 (Pass@1) (Percentile) B 4 G 0 G p y 8 U I q e T 9 M 6 Deepseek的能力图谱 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析0 码力 | 65 页 | 4.47 MB | 8 月前3
共 13 条
- 1
- 2













