积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(14)人工智能(14)

语言

全部中文(简体)(11)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(13)TXT文档 TXT(1)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 14 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    DeepSeek-R1 探索出RL方 法,且公开技术 • 诞生推理型Scaling Law DeepSeek颠覆式创新——技术创新 29政企、创业者必读 技术上实现对美国的赶超 掌握通向AI下一阶段的方法论 DeepSeek颠覆式创新——技术创新  美国人仍在遵循预训练Scaling law范式,走堆显卡路线,如 “星际之门”计划  中国DeepSeek-R1的创新突破,诞生推理型Scaling DeepSeek六大应用方向之五 科学研究:打造科研新范式 44政企、创业者必读 AI For Science,为基础科学带来革命性变化 2024诺贝尔化学奖颁发给研发AlphaFold的两位AI专家 未来所有科学研究都将以AI为中心 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 3. 冷冻电子显微镜 1. 利用Transformer的预测能力, 利用多模态大模型,识别传真病历, 并自动录入数据库 数字人打电话给患者,预约就诊时间 大模型查询保险知识库,自动生成理赔申请, 提交保险公司 就诊预约智能体 保险报告生成智能体 人工打电话给患者,预约就诊时间 病人到医院就诊 人工填写理赔申请,提交保险公司 病人到医院就诊 社区医生将患者病历传真到斯坦福预约中心 65政企、创业者必读 2023年是大模型之年 2024年是专业大模型之年
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    发 展的持续动力。 善用DeepSeek的两大关键:提出问题 鉴别答案 DeepSeek是什么? • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段:5分钟——用AI暴力生成框架(目标:3000字) 场景1:1小时内写完一个1万字的项目书 第二阶段:20分钟——用AI批量填充模块(目标:6000字) 针对每个小节单独提问,例如: “写一段‘2.1 用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 填充“虚但必需”的部分: p 政策背书: “生成5条2023年国家层面支持智能物流园区的政策原文(带发文号),并解读对本案的指导意义。”
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 任务 你需要完成以下两个任务: 1.阅读网页【网址】源代码【对应网页源代码】。提取所 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 2.撰写python脚本,基于步骤1输出的网址列表提取所有网 能够精准分析关键 指标生存率,但对 特征提取不完整, 仅能识别较为浅层 的数据关联,分析 能力相对较弱。  DeepSeek R1与Open AI o3mini的数据分析能力相当,且领先其他两个模型,均能够精准抓取数据核心指标并做统计,找到各特征与核心 指标的关联,其中R1分析逻辑更加清晰严谨,而o3推理更加高效;  Kimi k1.5推理逻辑清晰但分析能力相对较弱, Claude 3 撰写文章标题指令 指令:我想让您担任学术期刊编辑,我将向您提供一份手稿摘要,您将向我提供 5 个好的研究论文英文标题,并解释为什 么这个标题是好的。请将输出结果以 Markdown 表格的形式提供,表格有两列,标题为中文。第一列给出英文标题,第二 列给出中文解释。以下文本为摘要: 【指令后加上文章的摘要】。 中-英、英-中互译指令 指令:我想让你充当一名科研类的英汉翻译,我会向你提供一种语言的一些
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 户输入来控制内容的生成。用户输入文本描述所需的内容,然后模型输出与描 述相符的内容。下图 1描述了 AI 大模型,AIGC 和 AGI 关系。 Figure 高效的学习能力和强大的通用性而受到关注。 开源大模型以 Meta 的 Llama 系列,2024 年 4 月,Llama3 发布,包括 8B 和 70B 模型。 图 2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的日期)来 确定大型语言模型(大小超过 10B)的发展历程。如果没有相应的论文,我们 将模型的日期设定为其公开发布或宣布的最早时间。我们用黄色标记那些公开 可用的模型检查点。由于空间 围。窗口越大,模型就能处理越长的上下文,对理解长文本内容非常重要。 较大的窗口允许模型处理更长的文本片段,从而提高在长文本任务中的表 现,如长篇对话、文档生成和分析等。 1.4.2 单位 B 和 T 在 AI 大模型中,常用的两个单位是 B 和 T。 B(十亿,Billion):在英文里是 Billion 的缩写,表示十亿。对于 AI 大模型 来说,B 一般用于描述模型的参数数量。例如,具有 50B 参数的模型代表这个 模型有
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    的 风险及时采取措施。 人工智能安全治理框架 (V1.0)- 2 - 人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 (b)用于违法犯罪活动的风险。人工智能可能被利用于涉恐、涉暴、涉赌、 涉毒等传统违法犯罪活动,包括传授违法犯罪技巧、隐匿违法犯罪行为、制作 违法犯罪工具等。 (c)两用物项和技术滥用风险。因不当使用或滥用人工智能两用物项和 技术,对国家安全、经济安全、公共卫生安全等带来严重风险。包括极大降低 非专家设计、合成、获取、使用核生化导武器的门槛;设计网络武器,通过自 动挖掘与利用漏洞等方式,对广泛潜在目标发起网络攻击。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    主要亮点在于出色的数学和逻辑推理能力,区别于一般的通 用 AI 模型。其训练方式结合了强化学习(RL)与监督微调(SFT),创造 了一种高效训练,高推理能力 AI 模型的方法。 整个训练过程分为核心两阶段,第一步训练基于 DeepSeek-V3 论文中的基 础模型(而非最终版本),并经历了 SFT 和基于纯强化学习调优 + 通用性 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 DeepSeek-R1-Zero R1-Zero 能生成高质量的推理数据,包括大量长链式思维(Chain-of-Thought, CoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 活动 通用任务上的表现。更加详细介绍参考3.3节。 3.2 含 R1-Zero 的中间推理模型训练过程 中间模型占据主要训练精力的阶段,实际上完全通过推理导向的强化学习 直接训练而成,完全跳过了监督微调(SFT),如下图8所示,只在强化学习 的冷启动阶段使用了 SFT。 图 8: Interim reasoning model 训练方法 大规模推理导向的强化学习训练,必不可少的就是推理数据,手动标注就
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) (按规则执行) 主动创新 (自主决策) Risk (风险特征) 低风险 (稳定可控) 高风险 (不确定性高) (限定于文本生成任务) DeepSeek 两种模型对比 V3 R1 DeepSeek 两种模型对比 V3 R1 如何提问?两种模型的提示语差异 • 基础模型(V3):“过程-结果”清晰(指令) • 深度思考(R1):目标清晰,结果可以模糊(推理) RTGO提示语结构 与 情感统一。软件支持美学意象风格的短片创作,具备角色一致性技术,离线生成样片,同时实现分镜自动成片功能,全面满足从创意策划到视频制作的高效智能化需求 一款基于人机快生理念的AI视频创作系统,从需求提交到成片仅需10分钟,即可输出75分质量的视频。 你想要生成什么样的文案? 这样的文案具备哪些特征? 你要针对什么生成类似文案? 篇幅、用词、结构优化 如何使用DeepSeek批量生成新媒体文案?
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 6 / 32 LLM 基础设施:向量数据库/数据库向量支持 自 2022 年 ChatGPT 问世以来,大模型星火初始,向量数据 库不但获得了技术领域的关注,也逐渐吸引了市场和资本的注 意力。近两年来,向量数据库公司迎来了一波融资潮:  Pinecone:已融资  Zilliz:已融资  Weaviate:已融资  Vespa:已融资  Chroma:已融资  Qdrant:已融资 其更好地适应特定的任务或应用场景。这一步骤使得通 用的大型模型能够在特定任务上表现出更高的精度和更 好的效果。 大模型框架提供了 LLM 的基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节。两者相结合, 使得 LLM 在广泛的应用场景中都能发挥出色的性能。 8 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架有哪些特点: :大模型开发框架通过提供高
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502华大大学清华大学普通通人普通人如何抓住红利DeepResearch科研AI指南入门精通20250204人工智能人工智能安全治理框架1.0图解10PDF第二赋能职场开源中国2023模型LLM技术报告
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩