积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(84)Linux(84)eBPF(19)Cilium(8)

语言

全部中文(简体)(40)英语(33)法语(2)中文(繁体)(2)德语(1)西班牙语(1)意大利语(1)日语(1)葡萄牙语(1)中文(简体)(1)

格式

全部PDF文档 PDF(75)其他文档 其他(9)
 
本次搜索耗时 0.136 秒,为您找到相关结果约 84 个.
  • 全部
  • 系统运维
  • Linux
  • eBPF
  • Cilium
  • 全部
  • 中文(简体)
  • 英语
  • 法语
  • 中文(繁体)
  • 德语
  • 西班牙语
  • 意大利语
  • 日语
  • 葡萄牙语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 How and When You Should Measure CPU Overhead of eBPF Programs

    How and When You Should Measure CPU Overhead of eBPF Programs Bryce Kahle, Datadog October 28, 2020 Why should I profile eBPF programs? CI variance tracking Tools kernel.bpf_stats_enabled kernel cases: – Benchmarking + CI/CD – Sampling profiler in production How does it work? – Adds ~20ns of overhead per run Two ways to enable kernel eBPF stats sysctl procfs Three ways to access kernel eBPF stats
    0 码力 | 20 页 | 2.04 MB | 1 年前
    3
  • pdf文档 openEuler OS Technical Whitepaper Innovation Projects (June, 2023)

    and reliability secCrypto secPaver secGear Simplified O&M and development A-Ops SysCare CPDS CPU GPU Optimal performance for a single scenario Multi-scenario capability collaboration and sharing automatically generates module files. • HPCRunner implements one-click compilation and operation, CPU/GPU performance profiling, and benchmarking based on HPC configurations. • All configurations are for optimization based on specific service characteristics and requirements. For example, specific CPU or device binding policies can be implemented. To meet the requirements of these applications, hwloc
    0 码力 | 116 页 | 3.16 MB | 1 年前
    3
  • pdf文档 openEuler 21.09 技术白皮书

    enhances server and cloud computing features, and incorporates key technologies including cloud-native CPU scheduling algorithms for hybrid service deployments and KubeOS for containers. As an OS platform suits hybrid deployments of online and offline cloud services. Its innovative CPU scheduling algorithm ensures real-time CPU preemption and jitter suppression for online services. Additionally, its innovative Docker+QEMU solution, the iSulad+shimv2+StratoVirt secure container solution reduces the memory overhead and boot time by 40%. • Dual-plane deployment tool eggo: OSs can be installed with one click for
    0 码力 | 36 页 | 3.40 MB | 1 年前
    3
  • pdf文档 Understanding Ruby with BPF - rbperf

    - Flexibility Why BPF? - Flexibility - Low overhead Why BPF? - Flexibility - Low overhead - Continuous profiling Why BPF? - Flexibility - Low overhead - Continuous profiling - No modifications of - Trace complex Ruby programs execution rbperf – on-CPU profiling - $ rbperf record --pid=124 cpu - $ rbperf report [...] rbperf – Rails on-CPU profile rbperf – tracing write(2) calls - $ rbperf driver program - Make the OSS version awesome - Better documentation (including how to measure overhead) - Add more output formats - Open source GDB / drgn helper - Other tools? - Containers support
    0 码力 | 19 页 | 972.07 KB | 1 年前
    3
  • epub文档 Cilium v1.10 Documentation

    relying on eBPF, all visibility is programmable and allows for a dynamic approach that minimizes overhead while providing deep and detailed visibility as required by users. Hubble has been created and specifically in the Linux kernel’s socket layer (e.g. at TCP connect time) such that per-packet NAT operations overhead can be avoided in lower layers. Bandwidth Management Cilium implements bandwidth management through If you are running in an environment with more than 250 nodes, 5k pods, or if you observe a high overhead in state propagation caused by Kubernetes events. If you do not want Cilium to store state in Kubernetes
    0 码力 | 1307 页 | 19.26 MB | 1 年前
    3
  • epub文档 Cilium v1.11 Documentation

    relying on eBPF, all visibility is programmable and allows for a dynamic approach that minimizes overhead while providing deep and detailed visibility as required by users. Hubble has been created and specifically in the Linux kernel’s socket layer (e.g. at TCP connect time) such that per-packet NAT operations overhead can be avoided in lower layers. Bandwidth Management Cilium implements bandwidth management through of reasons when to use a kvstore: If you are running in an environment where you observe a high overhead in state propagation caused by Kubernetes events. If you do not want Cilium to store state in Kubernetes
    0 码力 | 1373 页 | 19.37 MB | 1 年前
    3
  • epub文档 Cilium v1.9 Documentation

    relying on eBPF, all visibility is programmable and allows for a dynamic approach that minimizes overhead while providing deep and detailed visibility as required by users. Hubble has been created and specifically in the Linux kernel’s socket layer (e.g. at TCP connect time) such that per-packet NAT operations overhead can be avoided in lower layers. Bandwidth Management Cilium implements bandwidth management through If you are running in an environment with more than 250 nodes, 5k pods, or if you observe a high overhead in state propagation caused by Kubernetes events. If you do not want Cilium to store state in Kubernetes
    0 码力 | 1263 页 | 18.62 MB | 1 年前
    3
  • epub文档 Cilium v1.8 Documentation

    relying on BPF, all visibility is programmable and allows for a dynamic approach that minimizes overhead while providing deep and detailed visibility as required by users. Hubble has been created and specifically If you are running in an environment with more than 250 nodes, 5k pods, or if you observe a high overhead in state propagation caused by Kubernetes events. If you do not want Cilium to store state in Kubernetes number of open connections. Thus, clients are encouraged to cache their connections rather than the overhead of reopening TCP connections every time they need to store or retrieve data. Multiple clients can
    0 码力 | 1124 页 | 21.33 MB | 1 年前
    3
  • pdf文档 openEuler 21.03 技术白皮书

    platform Compass-CI Toolchain OpenStack Kubernetes Kylin HA Cluster scheduling and management CPU: x86, ARM, RISC-V GPU NPU Chips Apps Virtualization Containers QEMU Docker libvirt Virtualization/ least 4 GB Hard drives At least 20 GB Item Configuration Requirement Architecture AArch64, x86_64 CPU 2 CPUs Memory At least 4 GB Hard drives At least 20 GB 10 11 openEuler WHITE PAPER openEuler utilization, and fewer invalid migrations. 2. Enhanced CPU isolation: The isolation of interrupts and unbound kthreads further enhances the isolation of CPU cores and minimizes mutual interference between
    0 码力 | 21 页 | 948.66 KB | 1 年前
    3
  • epub文档 Cilium v1.5 Documentation

    number of open connec�ons. Thus, clients are encouraged to cache their connec�ons rather than the overhead of reopening TCP connec�ons every �me they need to store or retrieve data. Mul�ple clients can benefit in-kernel verifier ensures that BPF programs are safe to run and a JIT compiler converts the bytecode to CPU architecture specific instruc�ons for na�ve execu�on efficiency. BPF programs can be run at various between 10 seconds and 30 minutes or 12 hours for LRU based maps. This should automa�cally op�mize CPU consump�on as much as possible while keeping the connec�on tracking table u�liza�on below 25%. If needed
    0 码力 | 740 页 | 12.52 MB | 1 年前
    3
共 84 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
HowandWhenYouShouldMeasureCPUOverheadofeBPFProgramsopenEulerOSTechnicalWhitepaperInnovationProjectsJune202321.09技术白皮皮书白皮书UnderstandingRubywithBPFrbperfCiliumv110Documentation1121.03
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩