1.5 Go 语言构建高并发分布式系统实践go语⾔言并发编程实践 以360消息推送系统为例 如何应对的? go语⾔言在基础服务开发领域的优势? 我遭遇了哪些挑战? ⺫⽬目录 具有go特⾊色的运维 在⾼高并发,通信交互复杂,重业务逻辑的分布式系统中, Go语⾔言优势体现在:开发体验好 、⼀一定量级下服务稳定 、性能满⾜足 需要 ⼀一定量级下服务稳定: 50+内部产品,万款开发平台app 线上单机最⾼高160w⻓长连接 (24核 E5-2630 @ 2.30GHz 64G内存 ) qps在2~5w(取决于协议版本,业务逻辑,接⼊入端⺴⽹网络状况) 测试环境,可以通过300w⻓长连接压测(⺴⽹网络,连接稳定,⽆无带宽限制,实际可以更⾼高 ,决定于⼲⼴广播时候业务内存开销的cpu消耗带来的⼼心跳或者业务延时能否接受) 以360消息推送系统为例 ⾼高并发、通信交互复杂 � �/ ����/ ���� Admin���� ���������� �������� ������� ���push������ ������ 消息系统规模架构:重业务逻辑 ⾼高并发、通信交互复杂 Dispatcher Service Room Service Proxy Service Register Service Saver Service0 码力 | 39 页 | 5.23 MB | 1 年前3
1.2 基于 Golang 构建高可扩展的云原生 PaaS 平台0 码力 | 40 页 | 8.60 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Go 版也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; hello‑algo.com 2 0.1 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象0 码力 | 384 页 | 18.49 MB | 10 月前3
Hello 算法 1.1.0 Go版也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。0 码力 | 383 页 | 18.48 MB | 1 年前3
Hello 算法 1.0.0 Golang版也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 <0 码力 | 382 页 | 17.60 MB | 1 年前3
基于Go的大数据平台-党合萱系统设计分析与架构 • 多种上下游适配 • ⾼高吞吐/低延迟问题探究 • ⾼高可⽤用与⽔水平扩展 • ⾃自动化运维 • Go的应⽤用 简单 · 可信赖 系统设计分析与架构 构建系统的挑战 export service系统全貌 简单 · 可信赖 多种上下游适配 简单 · 可信赖 业务架构 简单 · 可信赖 导出模型 简单 · 可信赖 ⾼高吞吐/低延迟问题探究 简单 · 可信赖 简单 · 可信赖 ⾼高可⽤用与⽔水平扩展 简单 · 可信赖 master/server架构 • master/server间采⽤用golang rpc通信 • server上报⼼心跳证明⾃自⼰己存活,并汇报所 执⾏行行任务的情况 • master向server周期性下发任务,server 管理理⾃自身任务决定哪些要执⾏行行哪些要丢弃 简单 · 可信赖 master⾼高可⽤用 • mas server⾼高可⽤用 • server注册⾃自身,防⽌止单机重复运⾏行行 • server注册每⼀一个任务,防⽌止任务被重复执⾏行行 • server⾼高可⽤用,节点故障时任务会被调度到其他正常节点 简单 · 可信赖 server⾼高可⽤用 • server注册⾃自身,防⽌止单机重复运⾏行行 • server注册每⼀一个任务,防⽌止任务被重复执⾏行行 • server⾼高可⽤用,节点故障时任务会被调度到其他正常节点0 码力 | 34 页 | 1.26 MB | 1 年前3
2.7 Golang与高性能DSP竞价系统Right Reserved 什么是RTB与DSP 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高并发量请求处理(峰值QPS 20万) • 每天上百亿竞价请求 • 每个竞价请求要在100毫秒内响应(包含⺴⽹网络延迟) • 复杂的出价算法与逻辑 DSP竞价系统的挑战 专业DSP解决⽅方案 ReservedAll Right Reserved • 内存占⽤用过⼤大时,可以切分为多个实例,减少单个实例 的内存占⽤用,减少BgSave和重启时Load数据的时间 • ⼀一致性要求不是⾮非常⾼高的业务,可以把⾃自动的BgSave 关闭,在凌晨或者空闲时候⼿手动调⽤用BgSave Redis运维 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • 数据存在Redis中 • 占⽤用内存⼤大,达到2T内存 • 内存成本⾼高 • Redis没有集群,维护成本⾼高(嗯,当时是还没的) CookieMapping 第⼀一版 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right0 码力 | 51 页 | 5.09 MB | 1 年前3
2.游戏战中陪伴助手微服务架构设计与应用学习/模仿历史已吃鸡玩家的走位 - 历史玩家的状态,也可作为策略 - 通过特征向量匹配历史玩家 - 策略举例: - 关键帧内容:目标坐标、有资源、有敌人、无开火、无车 - 话术播报:“去小地图标注的地方搜刮,注意避开敌人” 方案探索——关键帧 / 路径推荐 针对具体场景开发 - 优势: - 战略级规划、序列化推荐 - 策略自动生成(除坐标外的特征穷举) - 主要不足: - 特征维度增加后,维度爆炸 推荐系统:策略召回和推荐 - 数据分析:离线策略挖掘和模型训练 - 管理平台:开发、运营、运维辅助 实现方案——Token 清洗 Token 清洗服务完整流程 - 挑战:150+类 token,如何高内聚,降低 token 计算逻辑复杂度 - 方案:Token 计算插件化 - 技术选型: - 对比:Lua vs Go 二进制——开发灵活 vs 性能 - 思考:Go 脚本? - 最终方案:0 码力 | 47 页 | 11.10 MB | 1 年前3
Hello 算法 1.0.0b4 Golang版如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,虽然不一定正确, 但至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 识地图”,带你了解不同“地雷”的形状大小和分布位置,让你掌握各种“排雷方法”。有了这些本领,相信 你可以更加自如地应对刷题和阅读文献,逐步构建起完整的知识体系。 本书中的代码附有可一键运行的源文件,托管于 我们按照说明书一步步操作,就能组装出精美的积木模型。 1. 初识算法 hello‑algo.com 11 Figure 1‑5. 拼装积木 两者的详细对应关系如下表所示。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得注意的是,数据结构与算法独立于编程语言。正因如此,本书得以提供多种编程语言的实现。 而数据结构是计算机中组织和存储数据的 方式。 1. 初识算法 hello‑algo.com 12 ‧ 数据结构与算法紧密相连。数据结构是算法的基石,而算法则是发挥数据结构作用的舞台。 ‧ 乐高积木对应于数据,积木形状和连接方式代表数据结构,拼装积木的步骤则对应算法。 13 2. 复杂度 2.1. 算法效率评估 2.1.1. 算法评价维度 从总体上看,算法设计追求以下两个层面的目标:0 码力 | 347 页 | 27.40 MB | 1 年前3
Hello 算法 1.0.0b5 Golang版如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,即使不是最优解, 也至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 识地图”,带你了解不同“地雷”的形状大小和分布位置,让你掌握各种“排雷方法”。有了这些本领,相信 你可以更加自如地应对刷题和阅读文献,逐步构建起完整的知识体系。 本书中的代码附有可一键运行的源文件,托管于 作的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 <0 码力 | 379 页 | 30.70 MB | 1 年前3
共 49 条
- 1
- 2
- 3
- 4
- 5













