Go Web编程go get github.com/DisposaBoy/MarGo 这个时候我们会发现在$GOPATH/bin下面多了两个可执行文件,gocode和MarGo,这两个文件会在GoSublime 加载时自动启动。 3. 安装完之后就可以安装Sublime的插件了。需安装GoSublime、SidebarEnhancements和Go Build,安装插件之 后记得重启Sublime生效,Ctrl+Shift+p打开Package 有必要导入多次)。当一个包被导入时,如果该包还导入了其它的包,那么会先将其它包导入进来,然后再对这些包 中的包级常量和变量进行初始化,接着执行init函数(如果有的话),依次类推。等所有被导入的包都加载完毕 了,就会开始对main包中的包级常量和变量进行初始化,然后执行main包中的init函数(如果存在的话),最后执 行main函数。下图详细地解释了整个执行过程: 图2.6 main函数引入包初始化流程图 上面这个fmt是Go语言的标准库,其实是去goroot下去加载该模块,当然Go的import还支持如下两种方式来加载自己 写的模块: 60 1. 相对路径 import “./model” //当前文件同一目录的model目录,但是不建议这种方式来import 2. 绝对路径 import “shorturl/model” //加载gopath/src/shorturl/model模块0 码力 | 295 页 | 5.91 MB | 1 年前3
2.1.1 Golang主动式内存缓存的优化探索之路数据一致性如何保证? 一致性 01. 缓存如何保证更新,如何与数据库同步 同步、更新 被动方式 缓存过期 定期同步 主动方式 监听数据变化 数据加载,更新 02. 全量数据加载,增量数据监听 • 每个应用服务分别消费数据变更消息 • 一个应用服务消费数据变更,应用服务集群内广播 Maxwell是一个能实时读取MySQL二进 制日志binlog,并生成JSON格式的消 索引 主键 倒排 业务快速增长 存储如何无限扩展? 存储扩展 05. 业务数据已经超过1000万,海量数据下,如何实现冷热数据的交换 冷 热 新 系 统 历 史 数 据 冷数据、数据量多 缓存成本大、命中低、收益小 热 数 据 当前系统中的热点数据 命中率高 系 统 新 增 数 据 近期新增数据,较大概率命中 存储空间 缓存性能 冷热可交换,引擎可扩展 06 基于MemoryTile的映射,特殊场景反序列化性能提升近600倍 主动式内存缓存框架 第三部分 技术全景图 01. 主动式内存缓存架构的技术全景图 数据中心、数据源 02. 分布式部署,解决海量数据的传输、加载 数据全量加载时,缓解数据库压力 链路优化 优化 协议 编码 空值剔除 数据存储、数据传输 带宽减少40% 2GB -> 1.2GB MaxwellConsumer 03. 通过golang接口的方式,实现业务与框架代码分离0 码力 | 48 页 | 6.06 MB | 1 年前3
Hello 算法 1.0.0b2 Golang版占用内存少、缓存局部性好 占用内存多 优势操作 随机访问 插入、删除 � 缓存局部性的简单解释 在计算机中,数据读写速度排序是“硬盘 < 内存 < CPU 缓存”。当我们访问数组元素时,计算 机不仅会加载它,还会缓存其周围的其它数据,从而借助高速缓存来提升后续操作的执行速度。 链表则不然,计算机只能挨个地缓存各个结点,这样的多次“搬运”降低了整体效率。 ‧ 下表对比了数组与链表的各种操作效率。 然,堆排序一 般无需弹出元素,仅需每轮将堆顶元素交换至数组尾部并减小堆的长度即可。 ‧ 获取最大的 ? 个元素。这既是一道经典算法题目,也是一种常见应用,例如选取热度前 10 的新闻作为 微博热搜,选取前 10 销量的商品等。 8.2. 建堆操作 * 如果我们想要根据输入列表来生成一个堆,这样的操作被称为「建堆」。 8. 堆 hello‑algo.com 135 8.2.1. 两种建堆方法 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 ?(?2) ,不如归并排序,但绝大部分情况 下,快速排序可以达到 ?(? log ?) 的复杂度。 ‧ 缓存使用效率高:哨兵划分操作时,将整个子数组加载入缓存中,访问元素效率很高。而诸如「堆排序」 需要跳跃式访问元素,因此不具有此特性。 ‧ 复杂度的常数系数低:在提及的三种算法中,快速排序的 比较、赋值、交换 三种操作的总体数量最少 (类似于「插入排序」快于「冒泡排序」的原因)。0 码力 | 202 页 | 15.73 MB | 1 年前3
Hello 算法 1.0.0b1 Golang版占用内存少、缓存局部性好 占用内存多 优势操作 随机访问 插入、删除 � 缓存局部性的简单解释 在计算机中,数据读写速度排序是“硬盘 < 内存 < CPU 缓存”。当我们访问数组元素时,计算 机不仅会加载它,还会缓存其周围的其它数据,从而借助高速缓存来提升后续操作的执行速度。 链表则不然,计算机只能挨个地缓存各个结点,这样的多次“搬运”降低了整体效率。 ‧ 下表对比了数组与链表的各种操作效率。 然,堆排序一 般无需弹出元素,仅需每轮将堆顶元素交换至数组尾部并减小堆的长度即可。 ‧ 获取最大的 ? 个元素。这既是一道经典算法题目,也是一种常见应用,例如选取热度前 10 的新闻作为 微博热搜,选取前 10 销量的商品等。 8.2. 建堆操作 * 如果我们想要根据输入列表来生成一个堆,这样的操作被称为「建堆」。 8. 堆 hello‑algo.com 132 8.2.1. 两种建堆方法 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 ?(?2) ,不如归并排序,但绝大部分情况 下,快速排序可以达到 ?(? log ?) 的复杂度。 ‧ 缓存使用效率高:哨兵划分操作时,将整个子数组加载入缓存中,访问元素效率很高。而诸如「堆排序」 需要跳跃式访问元素,因此不具有此特性。 ‧ 复杂度的常数系数低:在提及的三种算法中,快速排序的 比较、赋值、交换 三种操作的总体数量最少 (类似于「插入排序」快于「冒泡排序」的原因)。0 码力 | 190 页 | 14.71 MB | 1 年前3
Hello 算法 1.1.0 Go版优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 经常访问的数据和指令,以提高程序运行效率。三者共同协作,确保计算机系统高效运行。 如图 4‑10 所示,在程序运行时,数据会从硬盘中被读取到内存中,供 CPU 计算使用。缓存可以看作 CPU 的 一部分,它通过智能地从内存加载数据,给 CPU 提供高速的数据读取,从而显著提升程序的执行效率,减少 对较慢的内存的依赖。 第 4 章 数组与链表 hello‑algo.com 86 图 4‑10 硬盘、内存和缓存之间的数据流通 miss),此时 CPU 不得不从速度较慢的内存中加载所需数据。 显然,“缓存未命中”越少,CPU 读写数据的效率就越高,程序性能也就越好。我们将 CPU 从缓存中成功获 取数据的比例称为缓存命中率(cache hit rate),这个指标通常用来衡量缓存效率。 为了尽可能达到更高的效率,缓存会采取以下数据加载机制。 ‧ 缓存行:缓存不是单个字节地存储与加载数据,而是以缓存行为单位。相比于单个字节的传输,缓存行0 码力 | 383 页 | 18.48 MB | 1 年前3
Hello 算法 1.0.0 Golang版优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 经常访问的数据和指令,以提高程序运行效率。三者共同协作,确保计算机系统高效运行。 如图 4‑10 所示,在程序运行时,数据会从硬盘中被读取到内存中,供 CPU 计算使用。缓存可以看作 CPU 的 一部分,它通过智能地从内存加载数据,给 CPU 提供高速的数据读取,从而显著提升程序的执行效率,减少 对较慢的内存的依赖。 第 4 章 数组与链表 hello‑algo.com 86 图 4‑10 硬盘、内存和缓存之间的数据流通 miss」,此时 CPU 不得不从速度较慢的内存中加载所需数据。 显然,“缓存未命中”越少,CPU 读写数据的效率就越高,程序性能也就越好。我们将 CPU 从缓存中成功获 取数据的比例称为「缓存命中率 cache hit rate」,这个指标通常用来衡量缓存效率。 为了尽可能达到更高的效率,缓存会采取以下数据加载机制。 ‧ 缓存行:缓存不是单个字节地存储与加载数据,而是以缓存行为单位。相比于单个字节的传输,缓存行0 码力 | 382 页 | 17.60 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Go 版优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 经常访问的数据和指令,以提高程序运行效率。三者共同协作,确保计算机系统高效运行。 如图 4‑10 所示,在程序运行时,数据会从硬盘中被读取到内存中,供 CPU 计算使用。缓存可以看作 CPU 的 一部分,它通过智能地从内存加载数据,给 CPU 提供高速的数据读取,从而显著提升程序的执行效率,减少 对较慢的内存的依赖。 第 4 章 数组与链表 www.hello‑algo.com 86 图 4‑10 硬盘、内存和缓存之间的数据流通 miss),此时 CPU 不得不从速度较慢的内存中加载所需数据。 显然,“缓存未命中”越少,CPU 读写数据的效率就越高,程序性能也就越好。我们将 CPU 从缓存中成功获 取数据的比例称为缓存命中率(cache hit rate),这个指标通常用来衡量缓存效率。 为了尽可能达到更高的效率,缓存会采取以下数据加载机制。 ‧ 缓存行:缓存不是单个字节地存储与加载数据,而是以缓存行为单位。相比于单个字节的传输,缓存行0 码力 | 384 页 | 18.49 MB | 10 月前3
Hello 算法 1.0.0b4 Golang版) ?(1) 4. 数组与链表 hello‑algo.com 67 � 缓存局部性 在计算机中,数据读写速度排序是“硬盘 < 内存 < CPU 缓存”。当我们访问数组元素时,计算 机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓存来提升后续操作的执行速 度。链表则不然,计算机只能挨个地缓存各个节点,这样的多次“搬运”降低了整体效率。 4.4.1. Q & A � 数组存储 数 据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。 ‧ 获取最大的 ? 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻 作为微博热搜,选取销量前 10 的商品等。 8.2. 建堆操作 如果我们想要根据输入列表生成一个堆,这个过程被称为「建堆」。 8.2.1. 借助入堆方法实现 最直接的方法是借助“元素入堆操作”实现,首先 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 ?(?2) ,没有归并排序稳定,但在绝大 多数情况下,快速排序能在 ?(? log ?) 的时间复杂度下运行。 ‧ 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较 高。而像「堆排序」这类算法需要跳跃式访问元素,从而缺乏这一特性。 ‧ 复杂度的常数系数低:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与 「0 码力 | 347 页 | 27.40 MB | 1 年前3
Hello 算法 1.0.0b5 Golang版优化数据结构的操作效率。 ‧ 空间效率高: 数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问: 数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性: 当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下缺点。 ‧ 插入与删除效率低: 当数组中元素较多时,插入与删除操作需要移动大量的元素。 数 据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。 ‧ 获取最大的 ? 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻 作为微博热搜,选取销量前 10 的商品等。 8.2 建堆操作 在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。 8.2.1 自上而下构建 我们首先创建一个空堆,然后 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 ?(?2) ,没有归并排序稳定,但在绝大 多数情况下,快速排序能在 ?(? log ?) 的时间复杂度下运行。 ‧ 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较 高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。 ‧ 复杂度的常数系数低:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与 “0 码力 | 379 页 | 30.70 MB | 1 年前3
TarsGo微服务开发实践-利开园39ad0c","Code":0,"Error":"","Data":{"reply":"reply message:hi abc"}} 配置:业务逻辑的高效定制化 • Web配置管理 • 配置热更新 • 基于本地文件 • 线程安全 • 代码可维护性 • 文件读取不全问题(读写冲突) • 使用JSON格式 云原生:TARS上云实践 • K8S+TARS方案:https://github0 码力 | 15 页 | 4.23 MB | 1 年前3
共 26 条
- 1
- 2
- 3













