积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(99)C++(99)Conan(74)

语言

全部英语(87)中文(简体)(11)中文(繁体)(1)

格式

全部PDF文档 PDF(95)PPT文档 PPT(3)TXT文档 TXT(1)
 
本次搜索耗时 0.086 秒,为您找到相关结果约 99 个.
  • 全部
  • 后端开发
  • C++
  • Conan
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    左图的案例中,我们在根目录下,创建了 两个子项目 biology 和 pybmain ,他们 分别在各自的目录下有自己的 CMakeLists.txt 。 二、根项目的 CMakeLists.txt 配置 • 在根项目的 CMakeLists.txt 中,设置了默 认的构建模式,设置了统一的 C++ 版本 等各种选项。然后通过 project 命令初始 化了根项目。 • 随后通过 add_subdirectory biology 添加进来(顺序 无关紧要),这会调用 pybmain/CMakeLists.txt 和 biology/CMakeLists.txt 。 三、子项目的 CMakeLists.txt 配置 • 子项目的 CMakeLists.txt 就干净许多,只是创建了 biology 这个静态库对象,并通过 GLOB_RECRUSE 为他批量添加 了所有位于 src 和 include 下源码和头文件。 这个变量了。 • function 中则是基于定义者所在路径,优先访问定义者的作用域。这里需要 set(key val PARENT_SCOPE) 才能修改到外面的变量。 第二章:第三方库 / 依赖项配置 用 find_package 寻找系统中安装的第三方库并链接他们 find_package 命令 • 常用参数列表一览: • find_package( [version]
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    // 调用本地的构建系统执行 install 这个目标,即安 装 -D 选项:指定配置变量(又称缓存变量) • 可见 CMake 项目的构建分为两步: • 第一步是 cmake -B build ,称为配置阶段( configure ),这时只检测环境并生成构建规则 • 会在 build 目录下生成本地构建系统能识别的项目文件( Makefile Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 • 在配置阶段可以通过 -D 设置缓存变量。第二次配置时,之前的 -D 添加仍然会被保留。 • cmake -B build -DCMAKE_INSTALL_PREFIX=/opt/openvdb-8.0 • ↑ 设置安装路径为 /opt/openvdb-8 so ) • cmake -B build -DCMAKE_BUILD_TYPE=Release • ↑ 设置构建模式为发布模式(开启全部优化) • cmake -B build ← 第二次配置时没有 -D 参数,但是之前的 -D 设置的变量都会被保留 • (此时缓存里仍有你之前定义的 CMAKE_BUILD_TYPE 和 CMAKE_INSTALL_PREFIX ) -G 选项:指定要用的生成器
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • pdf文档 《深入浅出MFC》2/e

    MFC 預設的印表機制 / 669 Scribble 列印機制的補強 / 685 印表機的頁和文件的頁 / 685 配置 GDI 繪圖工具 / 687 尺寸與方向:關於映像模式(座標系統) / 688 分頁 / 693 表頭(Header)與表尾(Footer)/ 程序初始化过程中调用CreateWindow,为程序建立了一个窗口,做为程序的萤 幕舞台。CreateWindow 产生窗口之后会送出WM_CREATE 直接给窗口函数, 后者于是可以在此时机做些初始化动作(例如配置内存、开文件、读初始资 料...)。 2. 程序活着的过程中,不断以GetMessage 从消息贮列中抓取消息。如果这个消 息是WM_QUIT,GetMessage 会传回0 而结束while Windows 程序一开始就有了一个执行线程。我们可以调用CreateThread 产生额外的执行 线程,系统会帮我们完成下列事情: 1. 配置「执行线程对象」,其handle 将成为CreateThread 的传回值。 2. 设定计数值为1。 3. 配置执行线程的context。 4. 保留执行线程的堆栈。 5. 将context 中的堆栈指针缓存器(SS)和指令指针缓存器(IP)设定妥当。
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小 2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 9)。 2. 在 VSCode 的插件市场中搜索 java ,安装 Java Extension Pack 。 12.1.3. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程),MacOS 自带 Clang 无需安装。 2. 在 VSCode 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 12.1.4. Python 环境 1
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小 2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 9)。 2. 在 VSCode 的插件市场中搜索 java ,安装 Java Extension Pack 。 12.1.3. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程),MacOS 自带 Clang 无需安装。 2. 在 VSCode 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 12.1.4. Python 环境 1
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 Extension Pack 。 3.(可选)在命令行输入 pip install black ,安装代码格式化工具。 2. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程);MacOS 自带 Clang ,无须安装。 2. 在 VS Code 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 3.(可 选) 打 开 Settings
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要 在各种机器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费 因为它们非常适合用分治思想进行分 析。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作 呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 第 2 章 复杂度分析 hello‑algo.com 26 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 9)。 2. 在 VSCode 的插件市场中搜索 java ,安装 Extension Pack for Java 。 3. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程),MacOS 自带 Clang 无须安装。 2. 在 VSCode 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 3.(可 选) 打 开 Settings
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 Extension Pack 。 3.(可选)在命令行输入 pip install black ,安装代码格式化工具。 2. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程);MacOS 自带 Clang ,无须安装。 2. 在 VS Code 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 3.(可 选) 打 开 Settings
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    方法就是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够 反映真实情况,但也存在较大局限性。 难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。例如,在某台计算机中,算法 A 的运行时 间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要在各种 机器上进行测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的变 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何 操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 * 需要 10 ns,打印操作需要 5 ns 等。 3 2. 在 VSCode 的插件市场中搜索 java ,安装 Extension Pack for Java 。 16.1.3. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程),MacOS 自带 Clang 无需安装。 2. 在 VSCode 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 3.(可 选) 打 开 Settings
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 CPU 上运行,一个算法的内存操作密集,那么它在高性能内存上的表现就会更好。也 就是说,算法在不同的机器上的测试结果可能是 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 Extension Pack 。 3.(可选)在命令行输入 pip install black ,安装代码格式化工具。 2. C/C++ 环境 1. Windows 系统需要安装 MinGW(配置教程);MacOS 自带 Clang ,无须安装。 2. 在 VS Code 的插件市场中搜索 c++ ,安装 C/C++ Extension Pack 。 3.(可 选) 打 开 Settings
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
共 99 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件1611深入深入浅出MFCHello算法1.00b10b21.10b50b41.2简体中文简体中文
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩