积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(120)C++(120)Conan(74)

语言

全部英语(119)中文(简体)(1)

格式

全部PDF文档 PDF(120)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 120 个.
  • 全部
  • 后端开发
  • C++
  • Conan
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 simd: How to Express Inherent Parallelism Efficiently Via Data-Parallel Types

    CppCon ’23 @mkretz@floss.social github.com/mattkretzMotivation std::simd Overview Example: Image Processing Programming Models Outlook Summary Goals and non-goals for this talk • This is not a tutorial CppCon ’23 3 GSI Helmholtz Center for Heavy Ion ResearchMotivation std::simd Overview Example: Image Processing Programming Models Outlook Summary Motivation Motivation © by Matthias Kretz Matthias Kretz CppCon CppCon ’23 GSI Helmholtz Center for Heavy Ion ResearchMotivation std::simd Overview Example: Image Processing Programming Models Outlook Summary std::simd is for you! Matthias Kretz CppCon ’23 4 GSI Helmholtz
    0 码力 | 160 页 | 8.82 MB | 6 月前
    3
  • pdf文档 CppCon 2021: Persistent Data Structures

    Design Goals Methodology Performance Results Live Demonstration A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 2IntroductionIntroduction commercially available through Intel® OptaneTM DC Persistent Memory A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 4Introduction Persistent Block Granularity Figure 1: Traditional Memory Hierarchy [1] A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 5Introduction Persistent
    0 码力 | 56 页 | 1.90 MB | 6 月前
    3
  • pdf文档 Techniques to Optimise Multi-threaded Data Building During Game Development

    parallel code Writing systems as singletons Assuming only one instance is needed Assuming frame processing is happening Filling frame related buffers - crash when full Assuming all game systems are initialised data into global shared system - like object graph, ECS, or database Good for the game - makes processing files individually more difficult Speaker notesOPTIMISATION GOAL Minimise the time taken to process hash ▶ Use caches - for everything possible Processing caches Used internally during data building Store frequently read values - save on IO & processing Output caches Store built data - Can copy rather
    0 码力 | 99 页 | 2.40 MB | 6 月前
    3
  • pdf文档 The Roles of Symmetry And Orthogonality In Design

    System-specific adapters may require custom handling • Exceptional events may require special processing • Custom or adaptive behavior may invoke novel execution paths Guarantee • Inviolate principle may require special processing • Custom or adaptive behavior may invoke novel execution paths • Examples: • Prefer generalized solution, but plugin API allows for custom processing (such as hardware offloading) may require special processing • Custom or adaptive behavior may invoke novel execution paths • Examples: • Prefer generalized solution, but plugin API allows for custom processing (such as hardware offloading)
    0 码力 | 151 页 | 3.20 MB | 6 月前
    3
  • pdf文档 Get off my thread: Techniques for moving k to background threads

    current thread? Many environments have a dedicated thread for processing events: GUIs Client-Server applications Performing extensive processing on the event thread prevents other events from being handled long-lived and consumes resources The handling of the event is disconnected from the event No parallel processing: it’s a single thread!Dedicated threads: upsides Upsides to dedicated threads: The events are down the threadThread pools If a dedicated processing thread isn’t the ideal fit, an alternative is a pool of threadsThread pools If a dedicated processing thread isn’t the ideal fit, an alternative is
    0 码力 | 90 页 | 6.97 MB | 6 月前
    3
  • pdf文档 Taming the C++ Filter View

    by josuttis.com 51 C++ Consequences for Read Iterations C++20 ©2024 by josuttis.com 52 C++ Processing Containers and Views void print(const auto& coll) { for (const auto& elem : coll) { std::cout Compile-time ERROR Nico Josuttis C++ Filter View @cppcon 2024-09-17 26©2024 by josuttis.com 53 C++ Processing Containers and Views void print(const auto& coll) { for (const auto& elem : coll) { std::cout = main()::]' 1794 | begin() | ^~~~~ ©2024 by josuttis.com 54 C++ Processing Containers and Views void print(const auto& coll) { for (const auto& elem : coll) { std::cout
    0 码力 | 43 页 | 2.77 MB | 6 月前
    3
  • pdf文档 Embracing an Adversarial Mindset for Cpp Security

    Integrity Level • Cloud Service to handle the AI OCR processing UI App [Medium IL] Service [High IL] Serialized Data Cloud AI OCR Processing Serialized DataAdversary Perspective UI App [Medium [Medium IL] Service [High IL] Serialized Data Cloud AI OCR Processing File Input Validation Maliciously crafted file Loaded Resource Integrity Checking Privilege Escalation Safe Parsing? Safe security standards • GDPR (EU) - Privacy • CCPA (California) – Privacy • PCI DSS – Payment processing • HIPPA – Healthcare privacy •Endpoint Detection and Response •Compiler Security Extensions
    0 码力 | 92 页 | 3.67 MB | 6 月前
    3
  • pdf文档 Boosting Software Efficiency

    for transmission remains in RAM, awaiting further processing. 114PROBLEMS & SOLUTIONS Data for transmission remains in RAM, awaiting further processing. 115 So, what is the problem with that?PROBLEMS PROBLEMS & SOLUTIONS Data for transmission remains in RAM, awaiting further processing. 116 In case of unstable communication: Start to aggregate - takes a lot of space. Loss of data in case of reset.
    0 码力 | 180 页 | 1.65 MB | 6 月前
    3
  • pdf文档 Using Modern C++ to Build XOffsetDatastructure

    counts. // The division into areas and lines allows for more granular control over game data and processing, but it also increases the need for efficient data transfer between these divisions. // As players • Despite their differences, these approaches share a common characteristic: they all require processing data field by field. • This common feature leads us to a key concept that summarizes all these transfer or storage, such as in high- performance computing, game development, or real-time data processing systems. Fanchen Su, XOffsetDatastructure, CppCon 2024 1077.2 Takeaways • This code snippet demonstrates
    0 码力 | 111 页 | 3.03 MB | 6 月前
    3
  • pdf文档 Back to Basics: Generic Programming

    overload template requires is_container void process_collection(const C& c) { // ... processing } https://godbolt.org/z/rWP76vab1173 David Olsen – Generic Programming CppCon 2024 Don’t Specialize is_container void process_collection(const C& c) { // ... processing } template void process_collection(const std::list& c) { // ... list processing } https://godbolt.org/z/rWP76vab1174 David Olsen
    0 码力 | 175 页 | 1.16 MB | 6 月前
    3
共 120 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往
页
相关搜索词
simdHowtoExpressInherentParallelismEfficientlyViaDataParallelTypesCppCon2021PersistentStructuresTechniquesOptimiseMultithreadedBuildingDuringGameDevelopmentTheRolesofSymmetryAndOrthogonalityInDesignGetoffmythreadformovingbackgroundthreadsTamingtheC++FilterViewEmbracinganAdversarialMindsetCppSecurityBoostingSoftwareEfficiencyUsingModernBuildXOffsetDatastructureBackBasicsGenericProgramming
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩