积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(30)C++(30)

语言

全部中文(简体)(29)中文(繁体)(1)

格式

全部PPT文档 PPT(19)PDF文档 PDF(11)
 
本次搜索耗时 0.089 秒,为您找到相关结果约 30 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《深入浅出MFC》2/e

    (包括如厕 时间... )。 我的学习曲线比较不同,我比较倾向于了解事情的因,而不是该如何做事情。比方说,「应 该使用MFC 的哪个类别」或「要改写哪个虚拟函数」,对我而言还不如「CWinApp 何时何 地调用了我的什么函数」或「CDocManager 到底做了什么」来得有趣(嗯,虽说是一样重 要啦)。这些「事情的因」在您的书中有大量详细的介绍。 新庄. 辅大skyman@tpts4 net>: 先读一点SDK 著作,再读深入浅出MFC,就够了。 剩下就多看MSDN 吧。 我是一个刚学VC 不久的人,想写Windows 程序,却发现一大堆看不懂的函数或类别。 查help,都是英文,难懂其中意思。请问一下有没有关于这方面的函数用法及意义的书 籍呢? 有没有这方面的初学书籍。我逛了几间书店,是有买几本MFC 书籍,不过还是 看不懂。 "apexsoft" :如果要说书的话,侯俊杰先生翻译的深入Visual C++ 和他所写的深入浅出MFC 两本应该是够用了。不然就再加上一本SDK 书籍, 这样子应该是可以打个基础了。 CCA.bbs@cis.nctu.edu.tw:函数名称可以查help,重要的是C++ 的观念。另外就是要了 解MFC 里的Document/View/Frame,以及Dynamic Creation, Message mapping 等等。 深入浅出MFC
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    0. 写在前面 hello‑algo.com 4 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注释、内容 注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.3. 在动画图解中高效学习 视频和图片相比于文字的信息密度和结构化程度更高,更容易理解。在本书中,知识重难点会主要以动画、图 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分 析仍然是评判算法效率的最有效且常用的方法。 2.2.3. 函数渐近上界 设算法「计算操作数量」为 ?(?) ,其是一个关于输入数据大小 ? 的函数。例如,以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a = a } ?(?) 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号被称为「大 ? 记号 Big‑? Notation」,代表函数 ?(?) 的「渐近上界 asymptotic upper bound」。 我们要推算时间复杂度,本质上是在计算「操作数量函数 ?(?) 」的渐近上界。下面我们先来看看函数渐近上 界的数学定义。
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    0. 写在前面 hello‑algo.com 4 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注释、内容 注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.3. 在动画图解中高效学习 视频和图片相比于文字的信息密度和结构化程度更高,更容易理解。在本书中,知识重难点会主要以动画、图 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分 析仍然是评判算法效率的最有效且常用的方法。 2.2.3. 函数渐近上界 设算法「计算操作数量」为 ?(?) ,其是一个关于输入数据大小 ? 的函数。例如,以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a = a } ?(?) 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号被称为「大 ? 记号 Big‑? Notation」,代表函数 ?(?) 的「渐近上界 asymptotic upper bound」。 我们要推算时间复杂度,本质上是在计算「操作数量函数 ?(?) 」的渐近上界。下面我们先来看看函数渐近上 界的数学定义。
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2. 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,因此更易于理解。在本书中,重点和难点知识 置;完成后最左 3 张扑克已经有序。 4. 不断循环以上操作,直至所有扑克牌都有序后终止。 以上整理扑克牌的方法本质上就是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排 序库函数中都存在插入排序的身影。 Figure 1‑2. 扑克排序步骤 例三:货币找零。假设我们在超市购买了 69 元的商品,给收银员付了 100 元,则收银员需要给我们找 31 元。他会很自然地完成以下思考: 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2.2.3. 函数渐近上界 设算法的计算操作数量是一个关于输入数据大小 ? 的函数,记为 ?(?) ,则以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a =
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 第 0 章 前言 hello‑algo.com 5 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 第 0 章 前言 hello‑algo.com 5 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都存在插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 第 0 章 前言 www.hello‑algo.com 5 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 ‧ 但如果学过算法,我们就会知道内置排序函数的时间复杂度是 ?(? log ?) ;而如果给定的数据是固定 位数的整数(例如学号),那么我们就可以
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 zhihu.com/p/350068132 未来: C++20 引入模块( module ) https://zhuanlan.zhihu.com/p/350136757 未来: C++20 允许函数参数为自动推断( auto ) 未来: C++20 引入协程( coroutine )和生成器( generator ) 未来: C++20 标准库加入 format 支持 跑远了! • 鉴于 这种情况出现时,就意味着你需要把成员变量的读写封装为成员函数 不变性:请勿滥用封装 • 仅当出现“修改一个成员时,其他也成员要 被修改,否则出错”的现象时,才需要 getter/setter 封装。 • 各个成员之间相互正交,比如数学矢量类 Vec3 ,就没必要去搞封装,只会让程序员 变得痛苦,同时还有一定性能损失:特别 是如果 getter/setter 函数分离了声明和定 义,实现在另一个文件时!
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    INode 一切节点的公共基类。 多态的经典案例 • IObject 具有一个 eatFood 纯虚函数,而 CatObject 和 DogObject 继承自 IObject ,他 们实现了 eatFood 这个虚函数,实现了多态。 • 注意这里解构函数( ~IObject )也需要是虚函数 ,否则以 IObject * 存储的指针在 delete 时只 会释放 IObject 里的成员,而不会释放 m_catFood 。所以 这里的解构函数也是多态的,他根据类型的不同 调用不同派生类的解构函数。 多态用于设计模式之“模板模式” • 这样之后如果有一个任务是要基于 eatFood 做文章,比如要重复 eatFood 两遍。 • 就可以封装到一个函数 eatTwice 里,这个函数只需接受他们共同的基类 IObject 作为参数,然后调 用 eatFood 这个虚函数来做事(而不是直接操作具体的猫和狗本身)。 dont-repeat-yourself ), 也让函数的作者不必去关注点从猫和狗的其他具体细节,只需把握住他们统一具有的“吃”这个接口。 小知识: shared_ptr 如何深拷贝? 浅拷贝: 深拷贝: 思考:能不能把拷贝构造函数也作为虚函数? • 现在我们的需求有变,不是去对同一个对象调用两次 eatTwice ,而是先把对象复制一份 拷贝,然后对对象本身和他的拷贝都调用一次 eatFood 虚函数。 • 代码如下
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深入深入浅出MFCHello算法1.00b1C++0b20b41.10b51.2简体中文简体中文高性性能高性能并行编程优化课件02
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩