积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)C++(12)

语言

全部中文(简体)(11)中文(繁体)(1)

格式

全部PDF文档 PDF(9)PPT文档 PPT(3)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 12 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.0.0b4 C++版

    除了以上表格内容,搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。 线性搜索 ‧ 通用性较好,无需任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。 ‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。 ‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。 二分查找 ‧ 适用于 可在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达 ?(log ?) 甚至 ?(1) ,但通常需要借助额外数据结构。 ‧ 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合 适的搜索方法。 ‧ 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适合对查询效率 要求较高且无需范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。 Java)的内置排序函数都采用了插入排序,大致思路为:对于长数组,采用基 于分治的排序算法,例如快速排序;对于短数组,直接使用插入排序。 虽然冒泡排序、选择排序和插入排序的时间复杂度都为 ?(?2) ,但在实际情况中,插入排序的使用频率显 著高于冒泡排序和选择排序。这是因为: ‧ 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实 现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    有序 有序 无序 搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。 线性搜索 ‧ 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。 ‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。 ‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。 二分查找 ‧ 适用于 在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达 ?(log ?) 甚至 ?(1) ,但通常需要借助额外数据结构。 ‧ 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合 适的搜索方法。 第 10 章 搜索 hello‑algo.com 223 ‧ 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适用于对查询效 大致思路为:对于长数组,采用基于 分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序。 虽然冒泡排序、选择排序和插入排序的时间复杂度都为 ?(?2) ,但在实际情况中,插入排序的使用频率显 著高于冒泡排序和选择排序,主要有以下原因。 ‧ 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实 现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    有序 有序 无序 搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。 线性搜索 ‧ 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。 ‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。 ‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。 二分查找 ‧ 适用于 在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达 ?(log ?) 甚至 ?(1) ,但通常需要借助额外数据结构。 ‧ 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合 适的搜索方法。 ‧ 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适合对查询效率 要求较高且无须范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。 Java)的内置排序函数都采用了插入排序,大致思路为:对于长数组,采用基 于分治的排序算法,例如快速排序;对于短数组,直接使用插入排序。 虽然冒泡排序、选择排序和插入排序的时间复杂度都为 ?(?2) ,但在实际情况中,插入排序的使用频率显 著高于冒泡排序和选择排序,主要有以下原因。 ‧ 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实 现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    有序 有序 无序 搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。 线性搜索 ‧ 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。 ‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。 ‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。 二分查找 ‧ 适用于 在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达 ?(log ?) 甚至 ?(1) ,但通常需要借助额外数据结构。 ‧ 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合 适的搜索方法。 ‧ 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适用于对查询效 率要求较高且无须范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。 大致思路为:对于长数组,采用基于 分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序。 虽然冒泡排序、选择排序和插入排序的时间复杂度都为 ?(?2) ,但在实际情况中,插入排序的使用频率显 著高于冒泡排序和选择排序,主要有以下原因。 ‧ 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实 现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    有序 有序 无序 搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。 线性搜索 ‧ 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理 的时间比线性搜索的时间还要更长。 ‧ 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。 ‧ 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。 二分查找 ‧ 适用于 在特定数据结构中快速定位目标元素。此类算法效 率高,时间复杂度可达 ?(log ?) 甚至 ?(1) ,但通常需要借助额外数据结构。 ‧ 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合 适的搜索方法。 第 10 章 搜索 www.hello‑algo.com 223 ‧ 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适用于对查询效 大致思路为:对于长数组,采用基于 分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序。 虽然冒泡排序、选择排序和插入排序的时间复杂度都为 ?(?2) ,但在实际情况中,插入排序的使用频率显 著高于冒泡排序和选择排序,主要有以下原因。 ‧ 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实 现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    funcB funcC 内存信息查看工具: dmidecode • 可以看到小彭老师电脑上插了 2 块内存,频率都是 2667 MHz ,数据的宽度是 64 位( 8 字节)。 • 理论极限带宽 = 频率 * 宽度 * 数量 2667*16*2=42672 MB/s • 那么,频率相同的情况下,可以考虑插两块 8GB 的内存, 比插一块 16GB 的内存更快,不过价格可能还是翻倍的。 •
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    年的趋势,在 2005 年 初我们就应该研发出 10GHz 的芯片。 • 可为何直到今天也生产不出 10GHz 的芯片? • 结论:狭义的摩尔定律没有失效。但晶体管数 量的增加,不再用于继续提升单核频率,转而 用于增加核心数量。单核性能不再指数增长! 你醒啦?免费午餐结束了! 指望靠单核性能的增长带来程序性 能提升的时代一去不复返了,现在 要我们动动手为多核优化一下老的 程序,才能搭上摩尔定律的顺风车
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    12.2.3. Docker 部署 你可以使用 Docker 来部署本项目。稍等片刻,即可使用浏览器打开 http://localhost:8000 访问本项目。 git clone https://github.com/krahets/hello-algo.git cd hello-algo docker-compose up -d 使用以下命令即可删除部署。 docker-compose
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    12.2.3. Docker 部署 你可以使用 Docker 来部署本项目。稍等片刻,即可使用浏览器打开 http://localhost:8000 访问本项目。 git clone https://github.com/krahets/hello-algo.git cd hello-algo docker-compose up -d 使用以下命令即可删除部署。 docker-compose
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    保证了跨平台统一性 。 在自己的项目中,我推荐全部用对象库 (OBJECT) 替代静态库 (STATIC) 避免跨平台的麻烦 。 对象库仅仅作为组织代码的方式,而实际生成的可执行文件只有一个,减轻了部署的困难。 静态库的麻烦: GCC 编译器自作聪明,会自动剔除没有引用符号的那些对 象 对象库可以绕开编译器的不统一:保证不会自动剔除没引用到的对象文件 虽然动态库也可以避免剔除没引用的对象文件,但引入了运行时链接的麻烦
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
Hello算法1.00b4C++1.10b51.2简体中文简体中文高性性能高性能并行编程优化课件07060b10b211
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩