Hello 算法 1.0.0b4 C++版强的同学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通 读教材书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了 大部分精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,虽然不一定正确, 但至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 着我们需要在各种 机器上进行测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,输入数据量较小时, 算法 A 的运行时间可能短于算法 B;而输入数据量较大时,测试结果可能相反。因此,为了得到有说服力的 结论,我们需要测试各种规模的输入数据,这样需要占用大量的计算资源。 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为 如果你对复杂度分析的概念仍感到困惑,无需担心,我们会在后续章节详细介绍。 2.1.3. 复杂度分析重要性 复杂度分析为我们提供了一把评估算法效率的“标尺”,告诉我们执行某个算法所需的时间和空间资源,并使 我们能够对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为第一章的内容。然而,当我们讨论某个数据结构或算0 码力 | 343 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b1 C++版的同学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在受挫中步步退缩。通读教 材书籍也是常用方法,但对于面向求职的同学来说,毕业季、投递简历、应付笔面试已经占用大部分精力,厚 重的书本也因此成为巨大的挑战。 如果你也有上述烦恼,那么很幸运这本书找到了你。本书是我对于该问题给出的答案,虽然不一定正确,但至 少代表一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知识地 在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通 算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可 以开展不同算法之间的效率对比。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度出发,其并不适合作为第一 章内容。但是,当我们讨论某个数据结构或者算法的特0 码力 | 187 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b5 C++版学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通读教材 书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了大部分 精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,即使不是最优解, 也至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 在各种机器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 更少;而输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析体现算法运行所需的时间(空间)资源与输入数据大小之间的关系。它描述了随着输入数据大小 的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.0.0b2 C++版的同学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在受挫中步步退缩。通读教 材书籍也是常用方法,但对于面向求职的同学来说,毕业季、投递简历、应付笔面试已经占用大部分精力,厚 重的书本也因此成为巨大的挑战。 如果你也有上述烦恼,那么很幸运这本书找到了你。本书是我对于该问题给出的答案,虽然不一定正确,但至 少代表一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知识地 在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通 算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可 以开展不同算法之间的效率对比。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度出发,其并不适合作为第一 章内容。但是,当我们讨论某个数据结构或者算法的特0 码力 | 197 页 | 15.72 MB | 1 年前3
《深入浅出MFC》2/e如: CreateWindow 这是Win32 函数 strtok 这是C Runtime 函数库的函数 WM_CREATE 这是Windows 消息 ID_FILE_OPEN 这是资源识别码(ID) CDocument::Serialize 这是MFC 类别的成员函数 m_pNewViewClass 这是MFC 类别的成员变量 BEGIN_MESSAGE_MAP 这是MFC Scribble Step2-修改使用者接口(第9章):这个版本变化了菜单,使程序多 了笔宽设定功能。由于菜单的变化,也带动了工具栏与状态列的变化。 从这个版本中我们可以学习如何使用资源编辑器,制作各式各样的程序资源。为了把 菜单命令处理函数放置在适当的类别之中,我们需要深入了解所谓的Message ■ ■ ■ ■ 第0章 你㆒定要知道(導讀) 37 Mapping 和Command 程序分为「程序代码」和「UI(User Interface)资源」两大部份,两部份最后以RC 编译器整合为一个完整的EXE 文件(图1-1)。所谓UI 资源是指功能菜单、对话框 外貌、程序图标、光标形状等等东西。这些UI 资源的实际内容(二进制代码)系借助各 种工具产生,并以各种扩展名存在,如.ico、.bmp、.cur 等等。程序员必须在一个所谓 的资源描述档(.rc)中描述它们。RC 编译器(RC.EXE)读取RC0 码力 | 1009 页 | 11.08 MB | 1 年前3
Hello 算法 1.1.0 C++ 版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 C++版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 试,统计 平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随0 码力 | 379 页 | 18.48 MB | 10 月前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化CPU 的预取机制,他能够在等待 a[i+1] 的内存数据抵达时,默默地做着 a[i] 的计算,从而只要计 算的延迟小于内存的延迟,延迟就被隐藏起来了,而不必等内存抵达了再算。这就是为什么有些运算量不足 32 次的程序还是会无法达到 mem-bound ,手动预取以后才能达到,就是因为硬件预取预测失败,导致不得不等 内存抵达了才能算,导致延迟隐藏失败。隐藏成功: a[0] a[1] a[2] CPU 的预取机制,他能够在等待 a[i+1] 的内存数据抵达时,默默地做着 a[i] 的计算,从而只要计 算的延迟小于内存的延迟,延迟就被隐藏起来了,而不必等内存抵达了再算。这就是为什么有些运算量不足 32 次的程序还是会无法达到 mem-bound ,手动预取以后才能达到,就是因为硬件预取预测失败,导致不得不等 内存抵达了才能算,导致延迟隐藏失败。隐藏失败: a[0] a[1] a[2] _mm 系列指令读取 a 和计算加法 。 • 漫长的优化之路,终于有了戏剧性的回报 。 • 但是注意到这里 res[offset] 的访问,一次 只有其中一个被用上,不能很好的利用寄 存器资源。 使用 _mm_stream_ps 和 SIMD 指令,加速计算和直写 • 为了充分填满寄存器,我们把 t 循环和 offset 循环交换一下( loop-interchange ) ,把0 码力 | 147 页 | 18.88 MB | 1 年前3
现代C++ 教程:高速上手C++11/14/17/20本身并没有被修改。 第二个问题,为什么常量引用允许绑定到非左值?原因很简单,因为 Fortran 需要。 移动语义 传统 C++ 通过拷贝构造函数和赋值操作符为类对象设计了拷贝/复制的概念,但为了实现对资源的 移动操作,调用者必须使用先复制、再析构的方式,否则就需要自己实现移动对象的接口。试想,搬家的 时候是把家里的东西直接搬到新家去,而不是将所有东西复制一份(重买)再放到新家、再把原来的东 西 "capacity:" << v.capacity() << std::endl; // 输出 0 // 如下可看出 std::vector 的存储是自动管理的,按需自动扩张 // 但是如果空间不足,需要重新分配更多内存,而重分配内存通常是性能上有开销的操作 v.push_back(1); v.push_back(2); v.push_back(3); std::cout << "size:" 中,『记得』手动释放资源,总不是最佳实践。因为我们很有可能就忘记了去释放资源 而导致泄露。所以通常的做法是对于一个对象而言,我们在构造函数的时候申请空间,而在析构函数(在 离开作用域时调用)的时候释放空间,也就是我们常说的 RAII 资源获取即初始化技术。 凡事都有例外,我们总会有需要将对象在自由存储上分配的需求,在传统 C++ 里我们只好使用 new 和 delete 去『记得』对资源进行释放。而0 码力 | 83 页 | 2.42 MB | 1 年前3
共 19 条
- 1
- 2













