积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)C++(28)

语言

全部中文(简体)(28)

格式

全部PPT文档 PPT(18)PDF文档 PDF(10)
 
本次搜索耗时 0.045 秒,为您找到相关结果约 28 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    从汇编角度看编译器优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 新增的寄存器,给了汇编程序员更大的空间,降低了编译 器处理寄存器翻车( register spill )的压力。 • 因此 64 位比 32 位机器相比,除了内存突破 4GB 限制外,也有一定性能优势。 8 位, 16 位, 32 位, 64 位版本 al, ax, eax, rax r15b, r15w, r15d, r15 AT&T 汇编语言 GCC 编译器所生成的汇编语言就属于这种 返回值:通过
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    第一步是 cmake -B build ,称为配置阶段( configure ),这时只检测环境并生成构建规则 • 会在 build 目录下生成本地构建系统能识别的项目文件( Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 • 在配置阶段可以通过 -D 设置缓存变量。第二次配置时,之前的 发布模式,优化程度最高,性能最佳,但是编译比 Debug 慢 • MinSizeRel 最小体积发布,生成的文件比 Release 更小,不完全优化,减少二进制体积 • RelWithDebInfo 带调试信息发布,生成的文件比 Release 更大,因为带有调试的符号信 息 • 默认情况下 CMAKE_BUILD_TYPE 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3 -DNDEBUG` 3. MinSizeRel: `-Os -DNDEBUG` 4. RelWithDebInfo: `-O2
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 关于作者 • 我是 Taichi 编译器的贡献者之一( https://github.com/taichi-dev/taichi ) 关于作者(续) • 我是 Taichi Blend 的作者( https://github.com 关于作者(再续) • 主导 Zeno 节点仿真框架的开发( https://github.com/zenustech/zeno ) 什么是编译器 • 编译器,是一个根据源代码生成机器码的程序。 • > g++ main.cpp -o a.out • 该命令会调用编译器程序 g++ ,让他读取 main.cpp 中的字符串(称为源码),并根据 C+ + 标准生成相应的机器指令码,输出到 a.out
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    /biology/include 这个头文件搜 索路径。 五、子项目的源文件 • 这里我们给 biology 批量添加了 src/*.cpp 下的全部源码文 件。 • 明明只有 *.cpp 需要编译,为什么还添加了 include/*.h ? 为了头文件也能被纳入 VS 的项目资源浏览器,方便编辑。 • 因为子项目的 CMakeLists.txt 里指定的路径都是相对路径 ,所以这里指定 那么这个头文件是不需要导入 Animal.h 的,只需要一个前置声明 struct Animal ,只有实际调用了 Animal 成员函数的源文件需要导入 Animal.h 。 • 好处:加快编译速度,防止循环引用。 十一、以项目名为名字空间( namsepace ),避免符号冲突 • 在声明和定义外面都套一层名字空间,例如此处我的子项目名是 biology ,那 我就 biology::Animal libQt5Core.so ) 。 • 而是去找包配置文件(例如 Qt5Config.cmake ),这个配置文件里包含了包的具体信息, 包括动态库文件的位置,头文件的目录,链接时需要开启的编译选项等等。而且某些库都 具有多个子动态库,例如 Qt 就有 libQt5Core.so 、 libQt5Widgets.so 、 libQt5Network.so 。因此 CMake 要求所有第三方
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    享你的见解,帮助他人进步。 图 0‑7 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 阶段一:算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,先积累至少 100 道题目,熟悉主流的算法问题。初次刷题 时,“知识遗忘”可能是一个挑战,但请 刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo 本书的主要受众是算法初学者。如果你已有一定基础,本书能帮助你系统回顾算法知识,书中源代码也 可作为“刷题工具库”使用。 ‧ 书中内容主要包括复杂度分析、数据结构和算法三部分,涵盖了该领域的大部分主题。 ‧ 对于算法新手,在初学阶段阅读一本入门书至关重要,可以少走许多弯路。 ‧ 书中的动画图解通常用于介绍重点和难点知识。阅读本书时,应给予这些内容更多关注。 ‧ 实践乃学习编程之最佳途径。强烈建议运行源代码并亲自敲代码。 ‧
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    享你的见解,帮助他人进步。 图 0‑7 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 阶段一:算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,如“剑指 Offer”和“LeetCode Hot 100”,先积累至少 100 道题目,熟悉 3~5 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo 本书的主要受众是算法初学者。如果你已有一定基础,本书能帮助你系统回顾算法知识,书中源代码也 可作为“刷题工具库”使用。 ‧ 书中内容主要包括复杂度分析、数据结构和算法三部分,涵盖了该领域的大部分主题。 ‧ 对于算法新手,在初学阶段阅读一本入门书至关重要,可以少走许多弯路。 ‧ 书中的动画图解通常用于介绍重点和难点知识。阅读本书时,应给予这些内容更多关注。 ‧ 实践乃学习编程之最佳途径。强烈建议运行源代码并亲自敲代码。 ‧
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    享你的见解,帮助他人进步。 图 0‑7 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 阶段一:算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,先积累至少 100 道题目,熟悉主流的算法问题。初次刷题 时,“知识遗忘”可能是一个挑战,但请 刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www.hello‑algo 本书的主要受众是算法初学者。如果你已有一定基础,本书能帮助你系统回顾算法知识,书中源代码也 可作为“刷题工具库”使用。 ‧ 书中内容主要包括复杂度分析、数据结构和算法三部分,涵盖了该领域的大部分主题。 ‧ 对于算法新手,在初学阶段阅读一本入门书至关重要,可以少走许多弯路。 ‧ 书中的动画图解通常用于介绍重点和难点知识。阅读本书时,应给予这些内容更多关注。 ‧ 实践乃学习编程之最佳途径。强烈建议运行源代码并亲自敲代码。 ‧
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    到的问题,从而查漏补缺,激发更深入的思考。另一方面,期待你能慷慨地回答其他小伙伴的问题,分享您 的见解,帮助他人进步。 图 0‑6 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo.com 8 图 0‑7 算法学习路线 0.3 小结 ‧ 本书的主要受众是算法初学者。如果已有一定基础,本书能帮助您系统回顾算法知识,书内源代码也可 顾算法知识,书内源代码也可 作为“刷题工具库”使用。 ‧ 书中内容主要包括复杂度分析、数据结构、算法三部分,涵盖了该领域的大部分主题。 ‧ 对于算法新手,在初学阶段阅读一本入门书籍至关重要,可以少走许多弯路。 ‧ 书内的动画和图解通常用于介绍重点和难点知识。阅读本书时,应给予这些内容更多关注。 ‧ 实践乃学习编程之最佳途径。强烈建议运行源代码并亲自敲打代码。 ‧ 本书网页版的每个章节都
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭

    能逐步形成好的编码规范和最佳实践 检查代码风格问题挺准,但是 我warning都不看,还看这个? 大多数开发人员眼中的静态分析工具 检查逻辑问题好,但耗时长 还挺多误报,想用而不敢用  编译器里的Errors and warnings  自带静态分析的语言如Typescript, Rust  IDE里的智能提示  代码混淆和美化  代码交叉索引  Eclipse等IDE中的一键重构 代码评审中的静态分析 针对该提交 代码片段自 动触发分析 发现问题,拒绝代码合并 发起代码提交,如Pull Request 没有问题,允许合入 开发者 代码仓库 静态代码评审的样子 为何代码评审阶段? 2K Bugs 12K Warnings 225K Code Smell “找到几万个问题,没法修” “这是以前的业务逻辑,不用修” “这别人写的代码,不关我事” 大量报告引起不适 平均每次代码评 审小于50分钟 • 需要编译C/C++代码 • 使用了定理证明器求解可 行路径(精确,耗时) • 能跨函数分析 • 能处理指针 使用有深度的代码分析器 做到快速和准确 用尽量少机器完成一天几千次分析 每次分析10分钟要能结束 控制误报并建立反馈和改进机制 挑战:超大规模代码仓库 项目平均40分钟单机编译时间 项目平均编译代码量超百万行 编译的价值 C/C++代码逻辑受编
    0 码力 | 39 页 | 6.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    文件,和 .cpp 一样。 https://www.nvidia.cn/docs/IO/51635/NVIDIA_CUDA_Programming_Guide_1.1_chs.pdf CUDA 编译器兼容 C++17 • CUDA 的语法,基本完全兼容 C++ 。包括 C+ +17 新特性,都可以用。甚至可以把任何一个 C++ 项目的文件后缀名全部改成 .cu ,都能编 译出来。 • 运行以后,就会在 GPU 上执行 printf 了。 • 这里的 kernel 函数在 GPU 上执行,称为核 函数,用 __global__ 修饰的就是核函数。 没有反应?同步一下! • 然而如果直接编译运行刚刚那段代码,是不会打印出 Hello, world! 的。 • 这是因为 GPU 和 CPU 之间的通信,为了高效,是异 步的。也就是 CPU 调用 kernel<<<1, 1>>>() 符号,和性能优化意义上的内联无关。 • 优化意义上的内联指把函数体直接放到调用者那里去。 • 因此 CUDA 编译器提供了一个“私货”关键字: __inline__ 来 声明一个函数为内联。不论是 CPU 函数还是 GPU 都可以使 用,只要你用的 CUDA 编译器。 GCC 编译器相应的私货则 是 __attribute__((“inline”)) 。 • 注意声明为 __inline__
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件04110116Hello算法1.11.01.2简体中文简体中文0b5面向亿行代码静态分析系统设计实践肖枭08
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩