Hello 算法 1.0.0b1 C++版效率评估方法 实际测试 假设我们现在有算法 A 和 算法 B ,都能够解决同一问题,现在需要对比两个算法之间的效率。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时 << 0 << endl; } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 0.0 字符 char 2 bytes / 1 byte 0 ~ 216 − 1 0 布尔 bool 1 byte / 1 bit true 或 false false � 以上表格中,加粗项在「算法题」中最为常用。此表格无需硬背,大致理解即可,需要时可以 通过查表来回忆。 整数表示方式 整数的取值范围取决于变量使用的内存长度,即字节(或比特)数。在计算机中,1 字节 (byte) =0 码力 | 187 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b2 C++版效率评估方法 实际测试 假设我们现在有算法 A 和 算法 B ,都能够解决同一问题,现在需要对比两个算法之间的效率。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时 << 0 << endl; } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 0.0 字符 char 2 bytes / 1 byte 0 ~ 216 − 1 0 布尔 bool 1 byte / 1 bit true 或 false false � 以上表格中,加粗项在「算法题」中最为常用。此表格无需硬背,大致理解即可,需要时可以 通过查表来回忆。 整数表示方式 整数的取值范围取决于变量使用的内存长度,即字节(或比特)数。在计算机中,1 字节 (byte) =0 码力 | 197 页 | 15.72 MB | 1 年前3
Hello 算法 1.0.0b4 C++版强的同学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通 读教材书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了 大部分精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,虽然不一定正确, 但至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 化过程。 2.1.2. 效率评估方法 实际测试 假设我们现在有算法 A 和算法 B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 方法就是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够 反映真实情况,但也存在较大局限性。 难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。例如,在某台计算机中,算法 A 的运行时 间比算法 0; j < n + 1; j++) { cout << 0 << endl; } } } 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大 时,这些常数变得无足轻重。 2. 复杂度0 码力 | 343 页 | 27.39 MB | 1 年前3
Hello 算法 1.1.0 C++ 版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 ‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大时, 这些常数变得无足轻重。 表 2‑20 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0b5 C++版学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通读教材 书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了大部分 精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,即使不是最优解, 也至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 ‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 第 2 章 复杂度分析 hello‑algo.com 30 表 2‑1 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.0.0 C++版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 ‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大时, 这些常数变得无足轻重。 表 2‑20 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 ‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大时, 这些常数变得无足轻重。 表 2‑20 码力 | 379 页 | 18.48 MB | 10 月前3
《深入浅出MFC》2/eBEGIN_MESSAGE_MAP 这是MFC 宏 public 这是C++ 语言保留字 当我解释程序操作步骤时,如果使用中括号,例如【File/New】,表示选按File 菜单中 的New 命令项。或者用来表示一个对话窗,例如我写:【New Project】对话窗。 磁盘内容与安装 本书光盘片内含书中所有的范例程序,包括源代码与EXE 档。中介文件(如.OBJ 和.RES 等)并未放入。所有程序都可以在Visual 程序的事件驱动特性的了解(包 括消息的产生、获得、分派、判断、处理),以及对C++ 多态(polymorphism)的精确 体会。本章所提出的,是我对第一项必要基础的探讨,你可以从中获得关于Windows 程 序的诞生与死亡,以及多任务环境下程序之间共存的观念。至于第二项基础,将由第二章 为你夯实。 4 让我再强调一遍,本章就是我认为Windows 程序设计者一定要知道的基础知识。一个 连这些基础都不 LONG OnCreate(HWND hWnd, UINT wMsg, UINT wParam, LONG lParam) { ... } 与处理例程之对照表格 这是WM_COMMAND 命令项这是命令处理例程 于是窗口函数可以这么设计: 窗口函数 消息对照表 专门处理 WM_COMMAND 命令项目对照表 ↑ ↑ 22 //----------0 码力 | 1009 页 | 11.08 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅构建目标的 cmake 项目,有病啊! 你妨碍别人作为子模块用你的项目。没错说的就是你 OpenSim ,张心欣当时浪费好多时间伺候这个沙雕库。 还要指定一个环境变量 SIMBODY_HOME 指向他的依赖项 SimBody 的源码路径,这么 dedicated 让人咋 用? 第 4 章:任务域与嵌套 https://link.springer.com/chapter/10.1007%2F978-1-4842-4398-5_12 for 循环,根据刚刚生成写入的索引,依次写入数据。 加速比: 4.50 倍(考虑到这里 ind 只有 0 和 1 ,应该大有优化空间) 第 8 章:分治与排序 斐波那契数列第 n 项 斐波那契数列第 n 项:并行 tbb::task_group 的封装: tbb::parallel_invoke 任务划分得够细时,转为串行,缓解调度负担( scheduling overhead )0 码力 | 116 页 | 15.85 MB | 1 年前3
面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭降低感知误报率 用数据风控的方式管理 总结:代码评审中的静态分析 无需额外操作,不改变程序员习惯的流程 只分析变化的代码引起的问题 使用频次高,可形成数据驱动的分析器改进和 代码质量监控 推动规范落地和培训教育新员工 提高人工评审效果 零培训成本强制使用 基于gitlab的自动代码评审演示0 码力 | 39 页 | 6.88 MB | 1 年前3
共 15 条
- 1
- 2













