积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)C++(12)

语言

全部中文(简体)(9)英语(2)中文(繁体)(1)

格式

全部PDF文档 PDF(11)PPT文档 PPT(1)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 12 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 generic graph libraries

    done) { = visited vertex { for v in neighbors(u) { 证 (v not seen) { visit Adjacency-List Algorit BFS(G, 9) hms Enumerate vertices 1 for each vertex ET(G) “Vertex 2 color[u] 二 BLACK cf: CLRS Minimalist Approach: Index Adjacency Graph template auto bfs(conat Grapht graph,vertex_id_t source) { sing vertex_id_type = vertex_id_t; Enumerate , 1 人 neighbor vertices 1 了 Requirements: Basic BFS algorithms 。 The graph G is a rondom access range, meaning it can be indexed into with an object (of
    0 码力 | 76 页 | 6.59 MB | 6 月前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    二叉树的层序遍历 算法实现 广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是”一层层平推“, 两者背后的思想是一致的。 // === File: binary_tree_bfs.cpp === /* 层序遍历 */ vector levelOrder(TreeNode* root) { // 初始化队列,加入根结点 queue queue; Search」,简称为 BFS 和 DFS 。 9.3.1. 广度优先遍历 广度优先遍历优是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体地,从某 个顶点出发,先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推⋯⋯ 9. 图 hello‑algo.com 146 Figure 9‑9. 图的广度优先遍历 算法实现 BFS 常借助「队列」来实现。队列具有“先入先出”的性质,这与 常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS “由近及远”的思想是异曲同工的。 1. 将遍历起始顶点 startVet 加入队列,并开启循环; 2. 在循环的每轮迭代中,弹出队首顶点弹出并记录访问,并将该顶点的所有邻接顶点加入到队列尾部; 3. 循环 2. ,直到所有顶点访问完成后结束; 为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些结点已被访问。 // === File:
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    二叉树的层序遍历 算法实现 广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是”一层层平推“, 两者背后的思想是一致的。 // === File: binary_tree_bfs.cpp === /* 层序遍历 */ vector levelOrder(TreeNode* root) { // 初始化队列,加入根结点 queue queue; Search」,简称为 BFS 和 DFS 。 9.3.1. 广度优先遍历 广度优先遍历优是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体地,从某 个顶点出发,先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推⋯⋯ 9. 图 hello‑algo.com 146 Figure 9‑9. 图的广度优先遍历 算法实现 BFS 常借助「队列」来实现。队列具有“先入先出”的性质,这与 常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS “由近及远”的思想是异曲同工的。 1. 将遍历起始顶点 startVet 加入队列,并开启循环; 2. 在循环的每轮迭代中,弹出队首顶点弹出并记录访问,并将该顶点的所有邻接顶点加入到队列尾部; 3. 循环 2. ,直到所有顶点访问完成后结束; 为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些结点已被访问。 // === File:
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进” 的规则,两者背后的思想是一致的。 7. 树 hello‑algo.com 120 // === File: binary_tree_bfs.cpp === /* 层序遍历 */ vector levelOrder(TreeNode *root) { // 初始化队列,加入根节点 queue queue; Search」,简称 BFS 和 DFS。 9.3.1. 广度优先遍历 广度优先遍历是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体来说,从 某个顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有 顶点访问完毕。 Figure 9‑9. 图的广度优先遍历 9. 图 hello‑algo.com 175 算法实现 BFS 通常借助 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。 1. 将遍历起始顶点 startVet 加入队列,并开启循环。 2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。 3. 循环步骤 2. ,直到所有顶点被访问完成后结束。 为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    代码实现 广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进” 的规则,两者背后的思想是一致的。 // === File: binary_tree_bfs.cpp === /* 层序遍历 */ vector levelOrder(TreeNode *root) { // 初始化队列,加入根节点 queue queue; traversal」和「深度优先遍历 depth‑first traversal」。它们也常被称为「广度优先搜索 breadth‑first search」 和「深度优先搜索 depth‑first search」,简称 BFS 和 DFS 。 9.3.1 广度优先遍历 广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外 扩张。如图 9‑9 所示,从左上角顶点出发,先遍历该 顶点的所有邻接 顶点,以此类推,直至所有顶点访问完毕。 图 9‑9 图的广度优先遍历 第 9 章 图 hello‑algo.com 199 1. 算法实现 BFS 通常借助队列来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。 1. 将遍历起始顶点 startVet 加入队列,并开启循环。 2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    -std=c++17 行不行? • 请勿直接修改 CMAKE_CXX_FLAGS 来添加 -std=c++17 (你在百度 CSDN 学到的用 法)。 • 请使用 CMake 帮你封装好的 CMAKE_CXX_STANDARD (从业人员告诉你的正确用 法)。 • 为什么百度不对:你 GCC 用户手动指定了 -std=c++17 ,让 MSVC 的用户怎么办? • 此外 CMake 已经自动根据 另一种方式:通过全局的变量,让之后创建的所有对象都享有同样的属性 相当于改变了各个属性的初始默认值。 要注意此时 set(CMAKE_xxx) 必须在 add_executable 之前才有效。 如果你从百度学的 CMake ,你可能会犯如下的错误 对于 CXX_STANDARD 这种 CMake 本就提供了变量来设置的东西,就不 要自己去设置 -std=c++17 选项,会和 CMake 自己设置好的冲突,导致出
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    adth‑first search, BFS), 它体现了一种“一圈一圈向外扩展”的逐层遍历方式。 图 7‑9 二叉树的层序遍历 1. 代码实现 广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进” 的规则,两者背后的思想是一致的。实现代码如下: // === File: binary_tree_bfs.cpp === /* 层序遍历 */ 所有邻 接顶点,以此类推,直至所有顶点访问完毕。 图 9‑9 图的广度优先遍历 第 9 章 图 hello‑algo.com 200 1. 算法实现 BFS 通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想 异曲同工。 1. 将遍历起始顶点 startVet 加入队列,并开启循环。 2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。 尾部。 3. 循环步骤 2. ,直到所有顶点被访问完毕后结束。 为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。 // === File: graph_bfs.cpp === /* 广度优先遍历 */ // 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点 vector graphBFS(GraphAdjList &graph
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    breadth‑first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。 图 7‑9 二叉树的层序遍历 1. 代码实现 广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进” 的规则,两者背后的思想是一致的。实现代码如下: // === File: binary_tree_bfs.cpp === /* 层序遍历 */ 所示,从左上角顶点出发,首先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻 接顶点,以此类推,直至所有顶点访问完毕。 图 9‑9 图的广度优先遍历 1. 算法实现 BFS 通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想 异曲同工。 1. 将遍历起始顶点 startVet 加入队列,并开启循环。 2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。 尾部。 3. 循环步骤 2. ,直到所有顶点被访问完毕后结束。 为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。 // === File: graph_bfs.cpp === /* 广度优先遍历 */ // 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点 vector graphBFS(GraphAdjList &graph
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    adth‑first search, BFS), 它体现了一种“一圈一圈向外扩展”的逐层遍历方式。 图 7‑9 二叉树的层序遍历 1. 代码实现 广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进” 的规则,两者背后的思想是一致的。实现代码如下: // === File: binary_tree_bfs.cpp === /* 层序遍历 */ 接顶点,以此类推,直至所有顶点访问完毕。 图 9‑9 图的广度优先遍历 第 9 章 图 www.hello‑algo.com 200 1. 算法实现 BFS 通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想 异曲同工。 1. 将遍历起始顶点 startVet 加入队列,并开启循环。 2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。 key 而不存储 value 的哈希表,它可以在 ?(1) 时间复杂度下进行 key 的增删查改操作。根据 key 的唯一性,哈希集合通常用于数据去重等场景。 // === File: graph_bfs.cpp === /* 广度优先遍历 */ // 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点 vector graphBFS(GraphAdjList &graph
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 C++ 版

    dth‑first search, BFS), 它體現了一種“一圈一圈向外擴展”的逐層走訪方式。 圖 7‑9 二元樹的層序走訪 1. 程式碼實現 廣度優先走訪通常藉助“佇列”來實現。佇列遵循“先進先出”的規則,而廣度優先走訪則遵循“逐層推進” 的規則,兩者背後的思想是一致的。實現程式碼如下: // === File: binary_tree_bfs.cpp === /* 層序走訪 */ 接頂點,以此類推,直至所有頂點訪問完畢。 第 9 章 圖 www.hello‑algo.com 200 圖 9‑9 圖的廣度優先走訪 1. 演算法實現 BFS 通常藉助佇列來實現,程式碼如下所示。佇列具有“先入先出”的性質,這與 BFS 的“由近及遠”的思 想異曲同工。 1. 將走訪起始頂點 startVet 加入列列,並開啟迴圈。 2. 在迴圈的每輪迭代中,彈出佇列首頂點並記錄訪問, key 而不儲存 value 的雜湊表,它可以在 ?(1) 時間複雜度下進行 key 的增刪查改操作。根據 key 的唯一性,雜湊集合通常用於資料去重等場景。 // === File: graph_bfs.cpp === /* 廣度優先走訪 */ // 使用鄰接表來表示圖,以便獲取指定頂點的所有鄰接頂點 vector graphBFS(GraphAdjList &graph
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
genericgraphlibrariesHello算法1.00b1C++0b20b40b5高性性能高性能并行编程优化课件111.11.2简体中文简体中文繁体繁体中文
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩