C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 选项,当添加新文件时,自动更新变量 如果源码放在子文件夹里怎么办? 必须把路径名和后缀名的排列组合全部写出来吗?感觉好麻烦 大可不必!用 aux_source_directory ,自动搜集需要的文件后缀名 进一步: GLOB_RECURSE Fortran :老年人的编程语言 • CUDA :英伟达的 CUDA ( 3.8 版本新增) • OBJC :苹果的 Objective-C ( 3.16 版本新增) • OBJCXX :苹果的 Objective-C++ ( 3.16 版本新增) • ISPC :一种因特尔的自动 SIMD 编程语言( 3.18 版本新增) • 如果不指定 LANGUAGES ,默认为 C 和 CXX 。 https://cmake VERSION x.y.z) 可以把当前项目的版本号设定为 x.y.z 。 • 之后可以通过 PROJECT_VERSION 来获取当前项目的版本号。 • PROJECT_VERSION_MAJOR 获取 x (主版本号)。 • PROJECT_VERSION_MINOR 获取 y (次版本号)。 • PROJECT_VERSION_PATCH 获取 z (补丁版本号)。 一些没什么用,但 CMake0 码力 | 166 页 | 6.54 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 16 现代 CMake 模块化项目管理指南分别在各自的目录下有自己的 CMakeLists.txt 。 二、根项目的 CMakeLists.txt 配置 • 在根项目的 CMakeLists.txt 中,设置了默 认的构建模式,设置了统一的 C++ 版本 等各种选项。然后通过 project 命令初始 化了根项目。 • 随后通过 add_subdirectory 把两个子项 目 pybmain 和 biology 添加进来(顺序 无关紧要),这会调用 • 如果不加,在你创建新文件时, myvar 不会自动更新,还是旧的那几个文件,可能出现 undefined symbol ,需要重新运行 cmake -B build 才能更新。 • 加了,则每次 cmake --build 时自动检测目录是否更新,如果目录有新文件了, CMake 会自动帮你重新运行 cmake -B build 更新 myvar 变量。 六、头文件和源文件的一一对应关系 Qt5.12.1 ,你设置了环 境变量 Qt5_DIR=/opt/Qt5.12.1 ,后来又搞了个 B 项目依赖 Qt5.10.3 ,但是你忘了你设置过全 局的环境变量指向 5.12.1 了,导致版本冲突。 • 单项目有效(写死在 CMakeLists.txt )虽然方便了你,但是你的 CMakeLists.txt 拿到别人电脑 上(例如你通过 GitHub 开源的),可能你 set(Qt5_DIR0 码力 | 56 页 | 6.87 MB | 1 年前3
 《深入浅出MFC》2/e则停留在4.2,程序设计 的主轴没有什么大改变。对于新读者,本书乃全新产品自不待言,您可以从目录中细细琢磨 所有的主题。对于老读者,本书所带给您的,是更精致的制作,以及数章新增的内容(请看 第0章「与前版本之差异」)。 6 最后,我要说,我知道,这本书真的带给许多人很扎实的东西。而我所以愿意不计代价去做 些不求近利的深耕工作,除了这是身为专业作家的责任,以及个人的兴趣之外,是的,我自 己是工程师,我最清楚工程师在学习MFC 新竹1997.04.15 jjhou@ccca.nctu.edu.tw FAX 886-3-5733976 7 第一版序 有一种软件名曰version control,用来记录程序开发过程中的各种版本,以应不时之需,可以 随时反省、检查、回复过去努力的轨迹。 遗憾的是人的大脑没有version control 的能力。学习过程的彷徨犹豫、挫折困顿、在日积月 累的渐悟或x那之间的顿悟之后,彷 ,谁会在一再跌倒的地方做上 记号,永志不忘?谁会把推敲再三的心得殷实详尽地记录下来,为后学铺一条红地毯?也许, 没有version control 正是人类的本能,空出更多的脑力心力与精力,追求更新的事物。 但是,作为信息教育体系一员的我,不能不有version control。事实上我亦从来没有忘记初学 MFC 的痛苦:C++ 语言本身的技术问题是其一,MFC 庞大类别库的命名规则是其二,熟知0 码力 | 1009 页 | 11.08 MB | 1 年前3
 Hello 算法 1.1.0 C++ 版structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: 第 2 章 复杂度分析 hello‑algo File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.47 MB | 1 年前3
 Hello 算法 1.0.0 C++版structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 378 页 | 17.59 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 C++ 版操作方法,它具 有以下设计目标。 第 1 章 初识算法 www.hello‑algo.com 14 ‧ 空间占用尽量少,以节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 www.hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.0.0b1 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 }; 访问与更新元素。列表的底层数据结构是数组,因此可以在 ?(1) 时间内访问与更新元素,效率很高。 4. 数组与链表 hello‑algo.com 54 // === File: list.cpp === /* 访问元素 */ int num = list[1]; // 访问索引 1 处的元素 /* 更新元素 */ list[1] = 0; // 将索引 1 处的元素更新为 0 在0 码力 | 187 页 | 14.71 MB | 1 年前3
 Hello 算法 1.2.0 繁体中文 C++ 版作方法,它具 有以下設計目標。 第 1 章 初識演算法 www.hello‑algo.com 14 ‧ 空間佔用儘量少,以節省計算機記憶體。 ‧ 資料操作儘可能快速,涵蓋資料訪問、新增、刪除、更新等。 ‧ 提供簡潔的資料表示和邏輯資訊,以便演算法高效執行。 資料結構設計是一個充滿權衡的過程。如果想在某方面取得提升,往往需要在另一方面作出妥協。下面舉兩 個例子。 ‧ 鏈結串列相較於陣列 n) { res += i; i++; // 更新條件變數 } return res; } while 迴圈比 for 迴圈的自由度更高。在 while 迴圈中,我們可以自由地設計條件變數的初始化和更新步 驟。 第 2 章 複雜度分析 www.hello‑algo.com 21 例如在以下程式碼中,條件變數 ? 每輪進行兩次更新,這種情況就不太方便用 for 迴圈實現: // === File: iteration.cpp === /* while 迴圈(兩次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化條件變數 // 迴圈求和 1, 4, 10, ... while (i <= n) { res += i; // 更新條件變數 i++; i *= 2; } return res;0 码力 | 379 页 | 18.79 MB | 10 月前3
 Hello 算法 1.0.0b2 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 }; 访问与更新元素。列表的底层数据结构是数组,因此可以在 ?(1) 时间内访问与更新元素,效率很高。 4. 数组与链表 hello‑algo.com 54 // === File: list.cpp === /* 访问元素 */ int num = list[1]; // 访问索引 1 处的元素 /* 更新元素 */ list[1] = 0; // 将索引 1 处的元素更新为 0 在0 码力 | 197 页 | 15.72 MB | 1 年前3
 现代C++ 教程:高速上手C++11/14/17/20现代 C++ 教程:高速上手 C++11/14/17/20 欧长坤 (hi[at]changkun.de) 最后更新 2023 年 5 月 7 日- ff6ee89 注意 此 PDF 的内容可能过期,请检查本书网站以及 GitHub 仓库以获取最新内容。 版权声明 本书系欧长坤著,采用“知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND)”进 行许可 len_foo() 在运行期实际上是返 回一个常数,这也就导致了非法的产生。 注意,现在大部分编译器其实都带有自身编译优化,很多非法行为在编译器优化的加持下会 变得合法,若需重现编译报错的现象需要使用老版本的编译器。 C++11 提供了 constexpr 让用户显式的声明函数或对象构造函数在编译期会成为常量表达式,这 个关键字明确的告诉编译器应该去验证 len_foo 在编译期就应该是一个常量表达式。 == 1) return 1; if(n == 2) return 1; return fibonacci(n-1) + fibonacci(n-2); } 为此,我们可以写出下面这类简化的版本来使得函数从 C++11 开始即可用: constexpr int fibonacci(const int n) { return n == 1 || n == 2 ? 1 : fibonacci(n-1)0 码力 | 83 页 | 2.42 MB | 1 年前3
共 25 条
- 1
 - 2
 - 3
 













