Hello 算法 1.0.0 C++版如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 � 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 algorithm」是在有限时间内解决特定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.1.0 C++ 版如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 数据结构(data structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0b5 C++版如果您已经积累一定刷题量,熟悉大部分题型,那么本书可助您回顾与梳理算法知识体系,仓库源代码可以 被当作“刷题工具库”或“算法字典”来使用。 若您是算法大神,我们期待收到您的宝贵建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示 algorithm」是在有限时间内解决特定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量减少,节省计算机内存。 第 1 章 复执行某个任务, 我们通常会选用两种基本的程序结构:迭代和递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 数据结构(data structure)是组织和存储数据的方式,涵盖数据内容、数据之间关系和数据操作方法,它具 有以下设计目标。 第 1 章 初识算法 如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.0.0b4 C++版如果您已经积累一定刷题量,熟悉大部分题型,那么本书可助您回顾与梳理算法知识体系,仓库源代码可以 被当作“刷题工具库”或“算法字典”来使用。 若您是算法大神,我们期待收到您的宝贵建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容包括: ‧ 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 定问题的一组指令或操作步骤。算法具有以下特性: ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2. 数据结构定义 「数据结构 Data Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 和 C 的时间复杂度相同,但实际运行时间差别很大。同 样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2.2.3. 函数渐近上界 设算法的计算操作数量是一个关于输入数据大小 ? 的函数,记为 ?(?) ,则以下算法的操作数量为0 码力 | 343 页 | 27.39 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming洗脸 刷牙 烧开水 吃饭 看比站 拉粑粑 5 5 10 20 条件跳转指令 • 让不占用相同资源的任务同时进行,这也是 CPU 流水线的初衷。但理想是美好的,现实 是骨感的,对于程序来说,指令不只是一个 个简单的任务,有时候我们需要做判断,来 决定要执行的具体任务,这就是分支,在汇 编语言中体现为条件跳转指令。 • 例如我们这里给任务清单加一个,如果烧开 水时被烫伤,则直接去医院的特殊任务。 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 去医院 10 分钟 全身 无条件跳转指令 • 还有一个小问题,就是执行正常的分支走到“拉 粑粑”后,还会去医院。 • 为了在正常分支里不去医院,我们在“拉粑粑”后 面加一条无条件跳转指令,不论条件如何,直 接跳转到去医院的下一条指令,也就是程序结 束。 • if (! 烫伤 ) { • 刷牙 ; 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 (无条件)跳转到结束 去医院 10 分钟 全身 结束 跳转指令对流水线效率的影响 • 然而跳转指令的存在使得流水线的并行变得很困难了。例如我们本来可以烧开水和刷牙同 时进行节省时间的,但是因为烧好开水以后还要判断“是否烫伤”才能决定接下来是正常刷牙 还是去医院。这意味着流水线不得不在跳转指令前后发生断层(俗称流水线里的气泡)。0 码力 | 47 页 | 8.45 MB | 1 年前3
Hello 算法 1.0.0b1 C++版数题型,那么本书可以帮助你回顾与梳理算法知识 体系,仓库源代码可以被当作“刷题工具库”或“算法字典”来使用。 如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 i++) { for (int j = 0; j < n + 1; j++) { cout << 0 << endl; } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调0 码力 | 187 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b2 C++版数题型,那么本书可以帮助你回顾与梳理算法知识 体系,仓库源代码可以被当作“刷题工具库”或“算法字典”来使用。 如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 i++) { for (int j = 0; j < n + 1; j++) { cout << 0 << endl; } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调0 码力 | 197 页 | 15.72 MB | 1 年前3
现代C++ 教程:高速上手C++11/14/17/20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.4 条件变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 有时候,我们可能需要计算某个表达式的类型,例如: auto x = 1; auto y = 2; decltype(x+y) z; 你已经在前面的例子中看到 decltype 用于推断类型的用法,下面这个例子就是判断上面的变量 x, y, z 是否是同一类型: if (std::is_same::value) std::cout << "type x == int" << e(x), decltype(z)>::value) std::cout << "type z == type x" << std::endl; 其中,std::is_same 用于判断 T 和 U 这两个类型是否相等。输出结果为: type x == int type z == type x 20 2.3 类型推导 第 2 章语言可用性的强化 尾返回类型推导 你可能会思考,在介绍 0 码力 | 83 页 | 2.42 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程:用 std::try_to_lock 做参数 • 和无参数相比,他会调用 mtx1.try_lock() 而不是 mtx1.lock() 。之后,可以用 grd.owns_lock() 判断是否上锁成功。 std::unique_lock :用 std::adopt_lock 做参数 • 如果当前 mutex 已经上锁了,但是之后 仍然希望用 RAII 思想在解构时候自动调 用 无非是调用其构造参数名为 lock() 的成员函数,所以 std::unique_lock 也可以作 为 std::lock_guard 的构造参数! • 这种只要具有某些指定名字的成员函数,就判断一个 类是否满足某些功能的思想,在 Python 称为鸭子类 型,而 C++ 称为 concept (概念)。比起虚函数和 动态多态的接口抽象, concept 使实现和接口更加解 耦合且没有性能损失。 程安全的,调用本函数之前需要保证某 mutex 已经上锁。” 解决 2 :改用 std::recursive_mutex • 如果实在不能改的话,可以用 std::recursive_mutex 。他会自动判断是不 是同一个线程 lock() 了多次同一个锁,如 果是则让计数器加 1 ,之后 unlock() 会让 计数器减 1 ,减到 0 时才真正解锁。但是 相比普通的 std::mutex 有一定性能损失。0 码力 | 79 页 | 14.11 MB | 1 年前3
共 28 条
- 1
- 2
- 3













