 Hello 算法 1.1.0 C++ 版structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: 第 2 章 复杂度分析 hello‑algo File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 C++ 版structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: 第 2 章 复杂度分析 hello‑algo File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.47 MB | 1 年前3
 Hello 算法 1.0.0 C++版structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 378 页 | 17.59 MB | 1 年前3 Hello 算法 1.0.0 C++版structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 378 页 | 17.59 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 C++ 版操作方法,它具 有以下设计目标。 第 1 章 初识算法 www.hello‑algo.com 14 ‧ 空间占用尽量少,以节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 www.hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C++ 版操作方法,它具 有以下设计目标。 第 1 章 初识算法 www.hello‑algo.com 14 ‧ 空间占用尽量少,以节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两 个例子。 ‧ 链表相较于数组,在数 <= n) { res += i; i++; // 更新条件变量 } return res; } while 循环比 for 循环的自由度更高。在 while 循环中,我们可以自由地设计条件变量的初始化和更新步 骤。 第 2 章 复杂度分析 www.hello‑algo.com 21 例如在以下代码中,条件变量 ? 每轮进行两次更新,这种情况就不太方便用 for 循环实现: // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, 10, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res;0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.0.0b1 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。 ‧ 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元 素都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4.1.3. 数组常用操作 数组遍历。以下介绍两种常用的遍历方法。0 码力 | 187 页 | 14.71 MB | 1 年前3 Hello 算法 1.0.0b1 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。 ‧ 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元 素都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4.1.3. 数组常用操作 数组遍历。以下介绍两种常用的遍历方法。0 码力 | 187 页 | 14.71 MB | 1 年前3
 Hello 算法 1.0.0b2 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。 ‧ 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元 素都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4.1.3. 数组常用操作 数组遍历。以下介绍两种常用的遍历方法。0 码力 | 197 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 C++版Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。 数据结构简介 hello‑algo.com 42 「物理结构」反映了数据在计算机内存中的存储方式。从本质上看,分别是 数组的连续空间存储 和 链表的离散 空间存储。物理结构从底层上决定了数据的访问、更新、增删等操作方法,在时间效率和空间效率方面呈现出 此消彼长的特性。 Figure 3‑4. 连续空间存储与离散空间存储 所有数据结构都是基于数组、或链表、或两者组合实现的。例如栈和队列,既可以使用数组实现、也可以使用 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。 ‧ 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元 素都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4.1.3. 数组常用操作 数组遍历。以下介绍两种常用的遍历方法。0 码力 | 197 页 | 15.72 MB | 1 年前3
 Hello 算法 1.0.0b5 C++版structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量减少,节省计算机内存。 第 1 章 初识算法 hello‑algo.com 13 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便使得算法高效运行。 数据结构设计是一个充满权衡的过程。如果想要在某方面取得提升,往往需要在另一方面作出妥协。下面举 两个例子。 ‧ 链表相较于数组 <= n) { res += i; i++; // 更新条件变量 } return res; } 在 while 循环中,由于初始化和更新条件变量的步骤是独立在循环结构之外的,因此它比 for 循环的自由度 更高。 第 2 章 复杂度分析 hello‑algo.com 20 例如在以下代码中,条件变量 ? 每轮进行了两次更新,这种情况就不太方便用 for 循环实现。 // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; }0 码力 | 377 页 | 30.69 MB | 1 年前3 Hello 算法 1.0.0b5 C++版structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量减少,节省计算机内存。 第 1 章 初识算法 hello‑algo.com 13 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便使得算法高效运行。 数据结构设计是一个充满权衡的过程。如果想要在某方面取得提升,往往需要在另一方面作出妥协。下面举 两个例子。 ‧ 链表相较于数组 <= n) { res += i; i++; // 更新条件变量 } return res; } 在 while 循环中,由于初始化和更新条件变量的步骤是独立在循环结构之外的,因此它比 for 循环的自由度 更高。 第 2 章 复杂度分析 hello‑algo.com 20 例如在以下代码中,条件变量 ? 每轮进行了两次更新,这种情况就不太方便用 for 循环实现。 // === File: iteration.cpp === /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; }0 码力 | 377 页 | 30.69 MB | 1 年前3
 Hello 算法 1.0.0b4 C++版Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 1. 初识算法 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便使得算法高效运行。 数据结构设计是一个充满权衡的过程,这意味着要在某方面取得优势,往往需要在另一方面作出妥协。例如, 运行的程序很多并且缺少大量连续的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。 「物理结构」反映了数据在计算机内存中的存储方式,可分为数组的连续空间存储和链表的离散空间存储。物 理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特 点。 3. 数据结构 hello‑algo.com 39 Figure 3‑3. 连续空间存储与离散空间存储 所有数据结构都是基 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会丢失。 ‧ 内存浪费:我们可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素 都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4. 数组与链表 hello‑algo.com0 码力 | 343 页 | 27.39 MB | 1 年前3 Hello 算法 1.0.0b4 C++版Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 1. 初识算法 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便使得算法高效运行。 数据结构设计是一个充满权衡的过程,这意味着要在某方面取得优势,往往需要在另一方面作出妥协。例如, 运行的程序很多并且缺少大量连续的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。 「物理结构」反映了数据在计算机内存中的存储方式,可分为数组的连续空间存储和链表的离散空间存储。物 理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特 点。 3. 数据结构 hello‑algo.com 39 Figure 3‑3. 连续空间存储与离散空间存储 所有数据结构都是基 总结来看,数组的插入与删除操作有以下缺点: ‧ 时间复杂度高:数组的插入和删除的平均时间复杂度均为 ?(?) ,其中 ? 为数组长度。 ‧ 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会丢失。 ‧ 内存浪费:我们可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素 都是我们不关心的,但这样做同时也会造成内存空间的浪费。 4. 数组与链表 hello‑algo.com0 码力 | 343 页 | 27.39 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 选项,当添加新文件时,自动更新变量 如果源码放在子文件夹里怎么办? 必须把路径名和后缀名的排列组合全部写出来吗?感觉好麻烦 大可不必!用 aux_source_directory ,自动搜集需要的文件后缀名 进一步: GLOB_RECURSE 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3 -DNDEBUG` 3. MinSizeRel: `-Os -DNDEBUG` 4. RelWithDebInfo: 特性等比较耗时,检测完会把结果存储到缓存中,这样第二遍运行 cmake -B build 时就可以直接用缓存的值,就不需要再检测一遍了。 如何清除缓存?删 build 大法了解一下 然而有时候外部的情况有所更新,这时候 CMake 里缓存的却是旧的值,会导致一系列问题。 这时我们需要清除缓存,最简单的办法就是删除 build 文件夹,然后重新运行 cmake -B build 。缓存是很多 CMake0 码力 | 166 页 | 6.54 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 选项,当添加新文件时,自动更新变量 如果源码放在子文件夹里怎么办? 必须把路径名和后缀名的排列组合全部写出来吗?感觉好麻烦 大可不必!用 aux_source_directory ,自动搜集需要的文件后缀名 进一步: GLOB_RECURSE 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3 -DNDEBUG` 3. MinSizeRel: `-Os -DNDEBUG` 4. RelWithDebInfo: 特性等比较耗时,检测完会把结果存储到缓存中,这样第二遍运行 cmake -B build 时就可以直接用缓存的值,就不需要再检测一遍了。 如何清除缓存?删 build 大法了解一下 然而有时候外部的情况有所更新,这时候 CMake 里缓存的却是旧的值,会导致一系列问题。 这时我们需要清除缓存,最简单的办法就是删除 build 文件夹,然后重新运行 cmake -B build 。缓存是很多 CMake0 码力 | 166 页 | 6.54 MB | 1 年前3
 Hello 算法 1.2.0 繁体中文 C++ 版作方法,它具 有以下設計目標。 第 1 章 初識演算法 www.hello‑algo.com 14 ‧ 空間佔用儘量少,以節省計算機記憶體。 ‧ 資料操作儘可能快速,涵蓋資料訪問、新增、刪除、更新等。 ‧ 提供簡潔的資料表示和邏輯資訊,以便演算法高效執行。 資料結構設計是一個充滿權衡的過程。如果想在某方面取得提升,往往需要在另一方面作出妥協。下面舉兩 個例子。 ‧ 鏈結串列相較於陣列 n) { res += i; i++; // 更新條件變數 } return res; } while 迴圈比 for 迴圈的自由度更高。在 while 迴圈中,我們可以自由地設計條件變數的初始化和更新步 驟。 第 2 章 複雜度分析 www.hello‑algo.com 21 例如在以下程式碼中,條件變數 ? 每輪進行兩次更新,這種情況就不太方便用 for 迴圈實現: // === File: iteration.cpp === /* while 迴圈(兩次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化條件變數 // 迴圈求和 1, 4, 10, ... while (i <= n) { res += i; // 更新條件變數 i++; i *= 2; } return res;0 码力 | 379 页 | 18.79 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 C++ 版作方法,它具 有以下設計目標。 第 1 章 初識演算法 www.hello‑algo.com 14 ‧ 空間佔用儘量少,以節省計算機記憶體。 ‧ 資料操作儘可能快速,涵蓋資料訪問、新增、刪除、更新等。 ‧ 提供簡潔的資料表示和邏輯資訊,以便演算法高效執行。 資料結構設計是一個充滿權衡的過程。如果想在某方面取得提升,往往需要在另一方面作出妥協。下面舉兩 個例子。 ‧ 鏈結串列相較於陣列 n) { res += i; i++; // 更新條件變數 } return res; } while 迴圈比 for 迴圈的自由度更高。在 while 迴圈中,我們可以自由地設計條件變數的初始化和更新步 驟。 第 2 章 複雜度分析 www.hello‑algo.com 21 例如在以下程式碼中,條件變數 ? 每輪進行兩次更新,這種情況就不太方便用 for 迴圈實現: // === File: iteration.cpp === /* while 迴圈(兩次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化條件變數 // 迴圈求和 1, 4, 10, ... while (i <= n) { res += i; // 更新條件變數 i++; i *= 2; } return res;0 码力 | 379 页 | 18.79 MB | 10 月前3
 C++高性能并行编程与优化 -  课件 - 16 现代 CMake 模块化项目管理指南• 如果不加,在你创建新文件时, myvar 不会自动更新,还是旧的那几个文件,可能出现 undefined symbol ,需要重新运行 cmake -B build 才能更新。 • 加了,则每次 cmake --build 时自动检测目录是否更新,如果目录有新文件了, CMake 会自动帮你重新运行 cmake -B build 更新 myvar 变量。 六、头文件和源文件的一一对应关系0 码力 | 56 页 | 6.87 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 16 现代 CMake 模块化项目管理指南• 如果不加,在你创建新文件时, myvar 不会自动更新,还是旧的那几个文件,可能出现 undefined symbol ,需要重新运行 cmake -B build 才能更新。 • 加了,则每次 cmake --build 时自动检测目录是否更新,如果目录有新文件了, CMake 会自动帮你重新运行 cmake -B build 更新 myvar 变量。 六、头文件和源文件的一一对应关系0 码力 | 56 页 | 6.87 MB | 1 年前3
共 14 条
- 1
- 2













