 Hello 算法 1.0.0b1 C++版0. 写在前面 hello‑algo.com 5 Figure 0‑4. 运行代码示例 第一步:安装本地编程环境。参照附录教程,如果已有可直接跳过。 第二步:下载代码仓。如果已经安装 Git ,可以通过命令行来克隆代码仓。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 ? 次,因为 ? 前面的系数对时间 复杂度也不产生影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套 用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? + 2 ?(?) 2?2 + 3? + 2 ?(?2)0 码力 | 187 页 | 14.71 MB | 1 年前3 Hello 算法 1.0.0b1 C++版0. 写在前面 hello‑algo.com 5 Figure 0‑4. 运行代码示例 第一步:安装本地编程环境。参照附录教程,如果已有可直接跳过。 第二步:下载代码仓。如果已经安装 Git ,可以通过命令行来克隆代码仓。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 ? 次,因为 ? 前面的系数对时间 复杂度也不产生影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套 用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? + 2 ?(?) 2?2 + 3? + 2 ?(?2)0 码力 | 187 页 | 14.71 MB | 1 年前3
 Hello 算法 1.0.0b2 C++版0. 写在前面 hello‑algo.com 5 Figure 0‑4. 运行代码示例 第一步:安装本地编程环境。参照附录教程,如果已有可直接跳过。 第二步:下载代码仓。如果已经安装 Git ,可以通过命令行来克隆代码仓。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 ? 次,因为 ? 前面的系数对时间 复杂度也不产生影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套 用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? + 2 ?(?) 2?2 + 3? + 2 ?(?2)0 码力 | 197 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 C++版0. 写在前面 hello‑algo.com 5 Figure 0‑4. 运行代码示例 第一步:安装本地编程环境。参照附录教程,如果已有可直接跳过。 第二步:下载代码仓。如果已经安装 Git ,可以通过命令行来克隆代码仓。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 省略所有系数。例如,循环 2? 次、5? + 1 次、⋯⋯,都可以化简记为 ? 次,因为 ? 前面的系数对时间 复杂度也不产生影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套 用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 系数无法撼动阶数 这一结论。在 ? 趋于 无穷大时,这些常数都是“浮云”。 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? + 2 ?(?) 2?2 + 3? + 2 ?(?2)0 码力 | 197 页 | 15.72 MB | 1 年前3
 Hello 算法 1.0.0b4 C++版。与仅阅读 代码相比,编写代码的过程往往能带来更多收获。 Figure 0‑3. 运行代码示例 第一步:安装本地编程环境。请参照附录教程进行安装,如果已安装则可跳过此步骤。 第二步:下载代码仓。如果已经安装 Git ,可以通过以下命令克隆本仓库。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大 时,这些常数变得无足轻重。 2. 复杂度 hello‑algo.com 19 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? +0 码力 | 343 页 | 27.39 MB | 1 年前3 Hello 算法 1.0.0b4 C++版。与仅阅读 代码相比,编写代码的过程往往能带来更多收获。 Figure 0‑3. 运行代码示例 第一步:安装本地编程环境。请参照附录教程进行安装,如果已安装则可跳过此步骤。 第二步:下载代码仓。如果已经安装 Git ,可以通过以下命令克隆本仓库。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以点击“Download 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用上述 1. 和 2. 技巧。 以下示例展示了使用上述技巧前、后的统计结果。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 ? 趋于无穷大 时,这些常数变得无足轻重。 2. 复杂度 hello‑algo.com 19 操作数量 ?(?) 时间复杂度 ?(?(?)) 100000 ?(1) 3? +0 码力 | 343 页 | 27.39 MB | 1 年前3
 Hello 算法 1.0.0b5 C++版与阅读代码相比,编写代码的过程往往能带来更多收获。动手学,才是真的学。 图 0‑3 运行代码示例 运行代码的前置工作主要分为三步。 第一步:安装本地编程环境。请参照附录教程进行安装,如果已安装则可跳过此步骤。 第二步:下载代码仓。如果已经安装 Git ,可以通过以下命令克隆本仓库。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以在图 0‑4 所示的位置,点击“Download ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他 操作,因此系统无需保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归。0 码力 | 377 页 | 30.69 MB | 1 年前3 Hello 算法 1.0.0b5 C++版与阅读代码相比,编写代码的过程往往能带来更多收获。动手学,才是真的学。 图 0‑3 运行代码示例 运行代码的前置工作主要分为三步。 第一步:安装本地编程环境。请参照附录教程进行安装,如果已安装则可跳过此步骤。 第二步:下载代码仓。如果已经安装 Git ,可以通过以下命令克隆本仓库。 git clone https://github.com/krahets/hello-algo.git 当然,你也可以在图 0‑4 所示的位置,点击“Download ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他 操作,因此系统无需保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归。0 码力 | 377 页 | 30.69 MB | 1 年前3
 《深入浅出MFC》2/e感到生疏,主要是函数的运用和函数的参数十分复杂。我对WINDOWS SDK 编程较少,是 否应该要熟悉WINDOWS API 函数后,结合MFC 框架编程? 侯俊杰回复:的确如此。MFC 其实就是把Windows API 做了一层薄薄包装,包装于各个设 计良好的classes 而已。所以,掌握了MFC framework 架构组织之后,接下来在programming 实务方面,就是去了解并运用各个classes,而各个classes 以不同的方式(本例为长条图、点状图和文字形式)显示同一份资料。 Text 范例程序(第13 章):这个程序示范如何在同一份Document 的各个「同 源view 窗口」中,以不同的显示方法表现同一份资料,做到一体数面。 Graph2 范例程序(第13 章):这个程序示范如何为程序加上第二个Document 类型。其间关系到新的Document,新的View,新的UI。 MltiThrd 范例程序(第14 模块的协助,送到 该窗口的窗口函数去了。窗口函数通常利用switch/case 方式判断消息种类,以决定处置 方式。由于它是被Windows 系统所调用的(我们并没有在应用程序任何地方调用此函 数),所以这是一种call back 函数,意思是指「在你的程序中,被Windows 系统调用」 的函数。这些函数虽然由你设计,但是永远不会也不该被你调用,它们是为Windows 系 统准备的。0 码力 | 1009 页 | 11.08 MB | 1 年前3 《深入浅出MFC》2/e感到生疏,主要是函数的运用和函数的参数十分复杂。我对WINDOWS SDK 编程较少,是 否应该要熟悉WINDOWS API 函数后,结合MFC 框架编程? 侯俊杰回复:的确如此。MFC 其实就是把Windows API 做了一层薄薄包装,包装于各个设 计良好的classes 而已。所以,掌握了MFC framework 架构组织之后,接下来在programming 实务方面,就是去了解并运用各个classes,而各个classes 以不同的方式(本例为长条图、点状图和文字形式)显示同一份资料。 Text 范例程序(第13 章):这个程序示范如何在同一份Document 的各个「同 源view 窗口」中,以不同的显示方法表现同一份资料,做到一体数面。 Graph2 范例程序(第13 章):这个程序示范如何为程序加上第二个Document 类型。其间关系到新的Document,新的View,新的UI。 MltiThrd 范例程序(第14 模块的协助,送到 该窗口的窗口函数去了。窗口函数通常利用switch/case 方式判断消息种类,以决定处置 方式。由于它是被Windows 系统所调用的(我们并没有在应用程序任何地方调用此函 数),所以这是一种call back 函数,意思是指「在你的程序中,被Windows 系统调用」 的函数。这些函数虽然由你设计,但是永远不会也不该被你调用,它们是为Windows 系 统准备的。0 码力 | 1009 页 | 11.08 MB | 1 年前3
 Hello 算法 1.1.0 C++ 版“如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法 ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:0 码力 | 379 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 C++ 版“如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法 ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:0 码力 | 379 页 | 18.47 MB | 1 年前3
 Hello 算法 1.0.0 C++版”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归: 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: void algorithm(int n) { int a = 1; // +0(技巧0 码力 | 378 页 | 17.59 MB | 1 年前3 Hello 算法 1.0.0 C++版”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归: 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: void algorithm(int n) { int a = 1; // +0(技巧0 码力 | 378 页 | 17.59 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 C++ 版“如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法 ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C++ 版“如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法 ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:0 码力 | 379 页 | 18.48 MB | 10 月前3
 C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化n 行 m 列的二维数组。 • 通过 a[i * m + j] 访问第 i 行,第 j 列的元素。 • 释放时,统一用 free(a) • 注意到:动态的数组,因为编译器光从指针没办法推断出列数 m ,因此要手动扁平化。 C++ 动态数组 • vector C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化n 行 m 列的二维数组。 • 通过 a[i * m + j] 访问第 i 行,第 j 列的元素。 • 释放时,统一用 free(a) • 注意到:动态的数组,因为编译器光从指针没办法推断出列数 m ,因此要手动扁平化。 C++ 动态数组 • vector- a(n); 可以在堆上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • vector - free(a[i]); • free(a); • ↑ 有 Java 病的人,才会这样分配二维数组,又低效,又不方便。 • 造成了 m + 1 次 malloc 调用,内存都是分散的,每次访问都要解开两层指针,非常低效。 • 分配 n*m 二维数组,正确的方式永远是: float *a = malloc(n * m * sizeof(float)); • 也不要用 vector - > 为什么二级指针是低效的存储和索引方式 随机访问性能测试 内存分配性能测试 二维数组:行主序与列主序 • 实际上二维数组的扁平化分为两种方法,行主序与列主序。 • (以下符号约定: i 行号, j 列号; n 行数, m 列数) • C/C++ 编译器把静态数组 a[i][j] 翻译为 a[i * m + j] ,所以是列主序。 • Fortran 等非主流会把矩阵 A(i, j) 翻译为 a[i + j * n] ,所以是行主序。 0 码力 | 147 页 | 18.88 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 未初 始化 v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } • 我们现在遍历一个 map ,然后把他里面所有的 V 都设为 v2 ,要怎么做? • for (auto [k 对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 k v v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } • 我们现在遍历一个 map ,然后把他里面所有的 V 都设为 v2 ,要怎么做? • for (auto [k 对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 k v2 v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } 你修改的是栈空间 ( 周树人 ) 管我堆空间 ( 鲁迅 ) 什么事? • 我们现在遍历一个 map ,然后把他里面所有的0 码力 | 90 页 | 8.76 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 未初 始化 v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } • 我们现在遍历一个 map ,然后把他里面所有的 V 都设为 v2 ,要怎么做? • for (auto [k 对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 k v v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } • 我们现在遍历一个 map ,然后把他里面所有的 V 都设为 v2 ,要怎么做? • for (auto [k 对的一份深拷贝。你写入的只是这份拷贝 后的 V ,不是 map 中的那个 V 。 map 的遍历:遍历的同时修改怎么办? k v map 中的 堆空间 执行你这段代码 的栈空间 k v2 v2 要写入的数 执行中的代码 for (auto [k, v]: m) { v = v2; } 你修改的是栈空间 ( 周树人 ) 管我堆空间 ( 鲁迅 ) 什么事? • 我们现在遍历一个 map ,然后把他里面所有的0 码力 | 90 页 | 8.76 MB | 1 年前3
共 30 条
- 1
- 2
- 3













