 Hello 算法 1.0.0b4 C++版据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。 4.3. 列表 数组长度不可变导致实用性降低。在许多情况下,我们事先无法确定需要存储多少数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称 为「列表 List」。 Landis 在其 1962 年发表的论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大 ? 个元素的动态更新。 8. 堆 hello‑algo.com 162 // === File: top_k.cpp === /* 基于堆查找数组中最大的 k0 码力 | 343 页 | 27.39 MB | 1 年前3 Hello 算法 1.0.0b4 C++版据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。 4.3. 列表 数组长度不可变导致实用性降低。在许多情况下,我们事先无法确定需要存储多少数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称 为「列表 List」。 Landis 在其 1962 年发表的论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大 ? 个元素的动态更新。 8. 堆 hello‑algo.com 162 // === File: top_k.cpp === /* 基于堆查找数组中最大的 k0 码力 | 343 页 | 27.39 MB | 1 年前3
 Hello 算法 1.0.0b5 C++版章 数组与链表 hello‑algo.com 76 4.3 列表 数组长度不可变导致实用性降低。在实际中,我们可能事先无法确定需要存储多少数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 dynamic array」的数据结构,即长度可变的数组,也常被称 为「列表 list」。 Landis 在其 1962 年发表的论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大 ? 个元素的动态更新。 // === File: top_k.cpp === /* 基于堆查找数组中最大的 k 个元素 */ priority_queue0 码力 | 377 页 | 30.69 MB | 1 年前3 Hello 算法 1.0.0b5 C++版章 数组与链表 hello‑algo.com 76 4.3 列表 数组长度不可变导致实用性降低。在实际中,我们可能事先无法确定需要存储多少数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 dynamic array」的数据结构,即长度可变的数组,也常被称 为「列表 list」。 Landis 在其 1962 年发表的论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大 ? 个元素的动态更新。 // === File: top_k.cpp === /* 基于堆查找数组中最大的 k 个元素 */ priority_queue0 码力 | 377 页 | 30.69 MB | 1 年前3 Hello 算法 1.1.0 C++ 版和 E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了 AVL 树。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不 会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操作 的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 379 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 C++ 版和 E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了 AVL 树。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不 会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操作 的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 379 页 | 18.47 MB | 1 年前3 Hello 算法 1.0.0 C++版E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 378 页 | 17.59 MB | 1 年前3 Hello 算法 1.0.0 C++版E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树 不会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操 作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 378 页 | 17.59 MB | 1 年前3 Hello 算法 1.2.0 简体中文 C++ 版和 E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了 AVL 树。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不 会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操作 的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C++ 版和 E. M. Landis 在 论 文 “An algorithm for the organization of information”中提出了 AVL 树。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不 会退化,从而使得各种操作的时间复杂度保持在 ?(log ?) 级别。换句话说,在需要频繁进行增删查改操作 的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。 ) 。该方法的效率很高,当 ? 较小时,时间复杂度趋向 ?(?) ;当 ? 较大时,时间复杂度不会超过 ?(? log ?) 。 另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现 最大的 ? 个元素的动态更新。 8.4 小结 1. 重点回顾 ‧ 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。 ‧ 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性 能。 树查找 ‧ 适用于海量数据,因为树节点在内存中是分散存储的。 ‧ 适合需要维护有序数据或范围查找的场景。 ‧ 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 ?(?) 。 ‧ 若使用 AVL 树或红黑树,则各项操作可在 ?(log ?) 效率下稳定运行,但维护树平衡的操作会增加额 外的开销。0 码力 | 379 页 | 18.48 MB | 10 月前3 C++高性能并行编程与优化 -  课件 - 09 CUDA C++ 流体仿真实战边界条件:仅在第一层额外判断边界条件 进一步改进 VDB 导出:支持导出多个网格,并指定名称 进一步改进 VDB 导出: P-IMPL 模式 进一步改进 VDB 导出: F-IMPL 模式 Blender 渲染结果 改进 改进边界条件:外部边界流出而不是反弹,内部边界可以流出速度 Blender 中调整一下材质 Blender 中调整一下材质 改进对流:让烟雾随时间逐渐褪色 改进对流:让烟雾随时间逐渐褪色 改进对流:让烟雾随时间逐渐褪色 改进褪色:不是褪色 density ,而是褪色 temperature 改进褪色:不是褪色 density ,而是褪色 temperature 改进褪色:不是单纯地乘以 decayRate ,还和周围环境温度求平均值 改进温度:高温气体往上浮(作为外力来看待) 结果:更像火焰了 改进颜色场:让 clr 作为尘埃密度,密度越高越有向下坠落的趋势 问题:上面的尘埃无止境的飘下来 解决:纹理对象指定为 解决:纹理对象指定为 cudaAddressModeBorder 让越界访问自动变 0 即可 结果:小球加回来 改进温度:只有达到一定温度才会上升,否则(视为冷空气)下降 改进褪色:尘埃密度也会褪色0 码力 | 58 页 | 14.90 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 09 CUDA C++ 流体仿真实战边界条件:仅在第一层额外判断边界条件 进一步改进 VDB 导出:支持导出多个网格,并指定名称 进一步改进 VDB 导出: P-IMPL 模式 进一步改进 VDB 导出: F-IMPL 模式 Blender 渲染结果 改进 改进边界条件:外部边界流出而不是反弹,内部边界可以流出速度 Blender 中调整一下材质 Blender 中调整一下材质 改进对流:让烟雾随时间逐渐褪色 改进对流:让烟雾随时间逐渐褪色 改进对流:让烟雾随时间逐渐褪色 改进褪色:不是褪色 density ,而是褪色 temperature 改进褪色:不是褪色 density ,而是褪色 temperature 改进褪色:不是单纯地乘以 decayRate ,还和周围环境温度求平均值 改进温度:高温气体往上浮(作为外力来看待) 结果:更像火焰了 改进颜色场:让 clr 作为尘埃密度,密度越高越有向下坠落的趋势 问题:上面的尘埃无止境的飘下来 解决:纹理对象指定为 解决:纹理对象指定为 cudaAddressModeBorder 让越界访问自动变 0 即可 结果:小球加回来 改进温度:只有达到一定温度才会上升,否则(视为冷空气)下降 改进褪色:尘埃密度也会褪色0 码力 | 58 页 | 14.90 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 06  TBB 开启的并行编程之旅,其中 n 是元素个数 改进的并行缩并( GPU ) • 刚才那种方式对 c 比较大的情况不友好, 最后一个串行的 for 还是会消耗很多时间 。 • 因此可以用递归的模式,每次只使数据缩 小一半,这样基本每次都可以看做并行的 for ,只需 log2(n) 次并行 for 即可完成 缩并。 • 这种常用于核心数量很多,比如 GPU 上 的缩并。 结论:改进后的并行缩并的时间复杂度为 ,工作复杂度为 O(n+c) ,其中 n 是元素个数 改进的并行扫描( GPU ) 第一步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 第而步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 第三步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 用电量: 3*4=12 度电 总用时: 1*3=3 秒 结论:改进后的并行扫描的时间复杂度为 O(logn) ,工作复杂度为 并行快速排序 (和刚刚手写的快速排序)加速比: 2.05 倍 改进:数据足够小时,开始用标准库串行的排序 (和标准库串行的 std::sort )加速比: 4.59 倍 封装好了: tbb::parallel_sort (和标准库串行的 std::sort )加速比: 4.80 倍 重新认识改进的并行缩并 • 其实之前提到“改进后的并行缩并”,也是一 种分治法的思想:大问题一分为二变成小0 码力 | 116 页 | 15.85 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 06  TBB 开启的并行编程之旅,其中 n 是元素个数 改进的并行缩并( GPU ) • 刚才那种方式对 c 比较大的情况不友好, 最后一个串行的 for 还是会消耗很多时间 。 • 因此可以用递归的模式,每次只使数据缩 小一半,这样基本每次都可以看做并行的 for ,只需 log2(n) 次并行 for 即可完成 缩并。 • 这种常用于核心数量很多,比如 GPU 上 的缩并。 结论:改进后的并行缩并的时间复杂度为 ,工作复杂度为 O(n+c) ,其中 n 是元素个数 改进的并行扫描( GPU ) 第一步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 第而步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 第三步、 4 个线程,每个处理 2 个元素的扫描,花了 1 秒 用电量: 3*4=12 度电 总用时: 1*3=3 秒 结论:改进后的并行扫描的时间复杂度为 O(logn) ,工作复杂度为 并行快速排序 (和刚刚手写的快速排序)加速比: 2.05 倍 改进:数据足够小时,开始用标准库串行的排序 (和标准库串行的 std::sort )加速比: 4.59 倍 封装好了: tbb::parallel_sort (和标准库串行的 std::sort )加速比: 4.80 倍 重新认识改进的并行缩并 • 其实之前提到“改进后的并行缩并”,也是一 种分治法的思想:大问题一分为二变成小0 码力 | 116 页 | 15.85 MB | 1 年前3 面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭静态分析工具:半智能的代码分析机器人  静态分析辅助代码评审 自动化工具+流程才是未来 Bug! Thx! Bug!  投入大  KPI不痛不痒  使用主体和责任主体不一致  一步登天想要终极AI 代码质量改进工具、流程落地难 Bug! No Thx! DevOps: 代码质量责任应该左移 设计 代码 开发 代码 评审 入库 测试 发布 1. 非研发人员主导,沟通成本高,推动修复周期长 使用了定理证明器求解可 行路径(精确,耗时) • 能跨函数分析 • 能处理指针 使用有深度的代码分析器 做到快速和准确 用尽量少机器完成一天几千次分析 每次分析10分钟要能结束 控制误报并建立反馈和改进机制 挑战:超大规模代码仓库 项目平均40分钟单机编译时间 项目平均编译代码量超百万行 编译的价值 C/C++代码逻辑受编 译参数深度控制 源代码索引和统计 提升开源静态分析工 具分析质量 如何做到10分钟反馈分析结果 系统地改进分析时间 编译流程 分析流程 依赖关系分析 分布式 编译 分布式 分析 分布式链接 跨模块分析 报告整合 缓存 缓存 缓存 缓存 硬核玩家:从理论上改进静态分析能力 PLDI 2018: 去掉路径 遍历分析中的冗余 ICSE 2019:路径遍历内 存泄漏分析的多项式算法 需求2:误报率要低 方法1: 数据驱动的改进循环 降低 误报率0 码力 | 39 页 | 6.88 MB | 1 年前3 面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭静态分析工具:半智能的代码分析机器人  静态分析辅助代码评审 自动化工具+流程才是未来 Bug! Thx! Bug!  投入大  KPI不痛不痒  使用主体和责任主体不一致  一步登天想要终极AI 代码质量改进工具、流程落地难 Bug! No Thx! DevOps: 代码质量责任应该左移 设计 代码 开发 代码 评审 入库 测试 发布 1. 非研发人员主导,沟通成本高,推动修复周期长 使用了定理证明器求解可 行路径(精确,耗时) • 能跨函数分析 • 能处理指针 使用有深度的代码分析器 做到快速和准确 用尽量少机器完成一天几千次分析 每次分析10分钟要能结束 控制误报并建立反馈和改进机制 挑战:超大规模代码仓库 项目平均40分钟单机编译时间 项目平均编译代码量超百万行 编译的价值 C/C++代码逻辑受编 译参数深度控制 源代码索引和统计 提升开源静态分析工 具分析质量 如何做到10分钟反馈分析结果 系统地改进分析时间 编译流程 分析流程 依赖关系分析 分布式 编译 分布式 分析 分布式链接 跨模块分析 报告整合 缓存 缓存 缓存 缓存 硬核玩家:从理论上改进静态分析能力 PLDI 2018: 去掉路径 遍历分析中的冗余 ICSE 2019:路径遍历内 存泄漏分析的多项式算法 需求2:误报率要低 方法1: 数据驱动的改进循环 降低 误报率0 码力 | 39 页 | 6.88 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南mylib.cpp 里的 say_hello 函数 改进: mylib 作为一个静态库 改进: mylib 作为一个动态库 改进: mylib 作为一个对象库 https://www.scivision.dev/cmake-object-libraries/ 对象库类似于静态库,但不生成 .a 文件,只由 CMake 记住该库生成了哪些对象文件 改进: mylib 作为一个对象库 https://www0 码力 | 166 页 | 6.54 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南mylib.cpp 里的 say_hello 函数 改进: mylib 作为一个静态库 改进: mylib 作为一个动态库 改进: mylib 作为一个对象库 https://www.scivision.dev/cmake-object-libraries/ 对象库类似于静态库,但不生成 .a 文件,只由 CMake 记住该库生成了哪些对象文件 改进: mylib 作为一个对象库 https://www0 码力 | 166 页 | 6.54 MB | 1 年前3 《深入浅出MFC》2/e可不是那么容易学的,花多少时间才能登堂入室可还得 凭各人资质和基础呢。 浩瀚无涯的Windows API Windows 版本 推出日期 API 个数 消息个数 (持续增加当中) (持续增加当中) 第㆔篇 淺出 MFC 程式設計 324 Microsoft Foundation Classes(MFC) PC 世界里出了三套C++ Application Fram 是系统传进来的一个值,表示自从上次有消息进来,到现在,OnIdle 已经被调用 了多少次。稍后我将改写Hello 程序,把这个值输出到窗口上,你就可以知道空闲时间 是多么地频繁。lCount 会持续累增,直到CWinThread::Run 的消息循环又获得了一个讯 息,此值才重置为0。 注意:Jeff Prosise 在他的Programming Windows 95 with MFC 一书第7章谈到OnIdle 内容为CPoint。本例将用到CArray 的两个成员函数和一个运算子: GetSize:取得数组中的元素个数。 Add:在数组尾端增加一个元素。必要时扩大数组的大小。这个动作会在鼠标 左键按下后被持续调用,请看ScribbleView::OnLButtonDown。 operator[ ]:以指定之索引值取得或设定数组元素内容。 它们的详细规格请参考MFC Class Library Reference。0 码力 | 1009 页 | 11.08 MB | 1 年前3 《深入浅出MFC》2/e可不是那么容易学的,花多少时间才能登堂入室可还得 凭各人资质和基础呢。 浩瀚无涯的Windows API Windows 版本 推出日期 API 个数 消息个数 (持续增加当中) (持续增加当中) 第㆔篇 淺出 MFC 程式設計 324 Microsoft Foundation Classes(MFC) PC 世界里出了三套C++ Application Fram 是系统传进来的一个值,表示自从上次有消息进来,到现在,OnIdle 已经被调用 了多少次。稍后我将改写Hello 程序,把这个值输出到窗口上,你就可以知道空闲时间 是多么地频繁。lCount 会持续累增,直到CWinThread::Run 的消息循环又获得了一个讯 息,此值才重置为0。 注意:Jeff Prosise 在他的Programming Windows 95 with MFC 一书第7章谈到OnIdle 内容为CPoint。本例将用到CArray 的两个成员函数和一个运算子: GetSize:取得数组中的元素个数。 Add:在数组尾端增加一个元素。必要时扩大数组的大小。这个动作会在鼠标 左键按下后被持续调用,请看ScribbleView::OnLButtonDown。 operator[ ]:以指定之索引值取得或设定数组元素内容。 它们的详细规格请参考MFC Class Library Reference。0 码力 | 1009 页 | 11.08 MB | 1 年前3
共 15 条
- 1
- 2













