C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针从计算机组成原理看 C 语言指针 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 请问下面这三段代码有什么错误? • float x = -3.14; • printf(“%f\n”, abs(x)); 如果你没看出来(哪怕是其中一个),那就要好好上小彭老师的课哦! 字节( byte ) 和位( bit )有什么区别 • 众所周知,计算机是二进制的,存储的实际上是一个个 0 和 1 。 • 每个存储 0 或 1 的空间称为一个位( bit ),一位可以存储 0 或 1 两个可能的值。 • 现在的计算机都会把 8 个位打包成一个字节( byte ),也就是说: 1 字节 = 8 位。 • 一字节可以表示 0 到 类型 。 不同位数的计算机,字( word )的大小也不一样 • 刚刚说把 2 个字节( byte )拼成一个字( word ),实际上是 16 位计算机的做法。 • 16 位计算机得名就是因为他的字由 16 个位组成,早期的 8086 系列 CPU 就是 16 位 的。 • 在 32 位计算机上会把 4 个字节拼成一个字,字由 32 个位组成。 • 在 64 位计算机上会把 8 个字节拼成一个字,字由0 码力 | 128 页 | 2.95 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh.wikipedia.org/wiki/ASCII 计算机如何表达字符 • 众所周知,计算机只能处理二进制 整数,字符要怎么办呢? • 于是就有了 ASCII 码表,他规定, 每个英文字符(包括大小写字母、 数字、特殊符号)都对应着一个整 数。在计算机里只要存储这个的整 数,就能代表这个字符了。 • 代表空格, 48 代表 ‘ 0’ , 65 代表 ‘ A’ , 97 代表 ‘ a’…… • 32~126 这些整数就用于是表示这些 可显示字符 (printable character) 的。 计算机如何表达字符 • 除了可显示字符 (printable character) 外, ASCII 还规定了一 类特殊的控制字符 (control character) : • 0 表示空字符(‘ Enter 键一样,按 Ctrl+H 的效果和退格键 一样。 • 这是因为 ASCII 表中规定 ^I 就是 ‘ \t’ , ^J 就是 ‘ \ n’ , ^H 就是 ‘ \b’ ,所以以前原始的计算机键盘上其 实还没有 Enter 键,大家都是按 Ctrl+J 来换行的… … • 不过,如果直接在控制台输入 ‘ ^’ 和 ‘ C’ 两个字符并 没有 Ctrl+C 的效果哦!因为 ‘ ^C’ 是0 码力 | 162 页 | 40.20 MB | 1 年前3
Hello 算法 1.1.0 C++ 版——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 Tip 如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,请继续往下阅读,本书将引导你0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 C++版展示效果受限,可访问 hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 i 目 录 第 0 章 前言 1 0.1 关于本书 . 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 � 如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,请继续往下阅读,本书将 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 Tip 如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,请继续往下阅读,本书将引导你0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.0.0b5 C++版展示效果受限,可访问 hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读。” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 致谢 本书在开源社区众多贡献者的共同努力下不断成长。感谢每一位投入时间与精力的撰稿人,他们是 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将 数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转 移到计算机上,以更高效的方式解决各种复杂问题。 � 如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,请继续往下阅读,这本书 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量减少,节省计算机内存。 第 1 章 初识算法 hello‑algo.com 13 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 ‧ 提供简洁的数据表示和逻辑信息,以便使得算法高效运行。0 码力 | 377 页 | 30.69 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理s/TBBtutorial.pdf) - [ 并行体系结构与编程 (CMU 15-418)](https://www.bilibili.com/video/av48153629/) - [ 深入理解计算机原理 (CSAPP)](http://csapp.cs.cmu.edu/) - [CMake “ 菜谱” ](https://www.bookstack.cn/read/CMake-Cookbook/README 与 Java , Python 等垃圾回收语言不同, C++ 的 解构函数是显式的,离开作用域自动销毁,毫不含 糊(有好处也有坏处,对高性能计算而言利大于 弊) 如果没有解构函数,则每个带有返回的分 支都要手动释放所有之前的资源 : RAII :异常安全( exception-safe ) C++ 标准保证当异常发生时,会调用已创建对象的解构函数 。 因此 C++ 中没有(也不需要) finally 14f) 不会出错,但是 int{3.14f} 会出错,因为 {} 是非强制转换。 2. Pig(“ 佩奇” , 3.14f) 不会出错,但是 Pig{“ 佩奇” , 3.14f} 会出错,原因同上,更安全。 3. 可读性: Pig(1, 2) 则 Pig 有可能是个函数, Pig{1, 2} 看起来更明确。 • 其实谷歌在其 Code Style 中也明确提出别再通过 () 调用构造函数,需要类型转换时应该0 码力 | 96 页 | 16.28 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅数据量 的大小 n ,比如 O(n²) 表示花费时间和数据量的平方成正比。 • 对于并行算法,复杂度的评估则要分为两种: • 时间复杂度:程序所用的总时间(重点) • 工作复杂度:程序所用的计算量(次要) • 这两个指标都是越低越好。时间复杂度决定了快慢,工作复杂度决定了耗电量。 • 通常来说,工作复杂度 = 时间复杂度 * 核心数量 • 1 个核心工作一小时, 4 个核心工作一小时 剧透:因为本例中 reduce 是内存密集型, for 是计算密集型。 • 超线程对 reduce 这种只用了简单的加法,瓶颈在内存的算法起了作用。 • 而本例中 for 部分用了 std::sin ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 更专业的性能测试框架: Google benchmark • 手动计算时间差有点太硬核了,而且只运 行一次的结果可能不准确,最好是多次运 章:任务分配 https://link.springer.com/chapter/10.1007%2F978-1-4842-4398-5_12 并行:如何均匀分配任务到每个线程? • 对于并行计算,通常都是 CPU 有几个核心就开 几个线程,因为我们只要同时执行就行了嘛。 • 比如 cornell box 这个例子里,我们把图片均匀 等分为四块处理。然而发现 4 号线程所在的块, 由0 码力 | 116 页 | 15.85 MB | 1 年前3
Hello 算法 1.0.0b4 C++版成(按照首字母顺序排列)。感谢他们付出的时间与精力,正是他们确保了各语言代码的规范与统一。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读。” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 i 目 录 0. 前言 1 0.1. 关于本书 . . hello‑algo.com 9 Figure 1‑3. 货币找零过程 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将 数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转 移到计算机上,以更高效的方式解决各种复杂问题。 � 阅读至此,如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,那么太好了! ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2. 数据结构定义 「数据结构 Data Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 1. 初识算法 hello‑algo.com 10 ‧ 提供简洁0 码力 | 343 页 | 27.39 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化• 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 有 4 Main RAM read 的时间指的是 读一个缓存行( 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 60 码力 | 147 页 | 18.88 MB | 1 年前3
共 26 条
- 1
- 2
- 3













