积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)C++(12)

语言

全部中文(简体)(12)

格式

全部PDF文档 PDF(8)PPT文档 PPT(4)
 
本次搜索耗时 0.085 秒,为您找到相关结果约 12 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    从稀疏数据结构到量化数据类型 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 本课涵盖:稀疏矩阵、 unordered_map 、空间稀 疏网格、位运算、浮点的二进制格式、内存带宽优 化 面向人群:图形学、 :每个占据 8 字节 • 如果用更大的数据类型,用时会直接提升两倍! • 这是因为 i % 2 的计算时间,完全隐藏在内存 的超高延迟里了。 • 可见,当数据量足够大,计算量却不多时,读写 数据量的大小唯一决定着你的性能。 • 特别是并行以后,计算量可以被并行加速,而访 存却不行。 使用 int8_t :每个占据 1 字节 • 因此我们可以把数据类型变小,这样所需的内存 量就变小,从而内存带宽也可以减小! 对于右边这种内存瓶颈的循环体,从 4 字节的 int 改成 int8_t ,理论上可以增加 4 倍速度! • 这就是量化数据类型的思想,把占空间大的数据 类型转换成较小的(损失一定精度,换来性能) 。 • 因此如果你的程序不需要那么高精度,可以考虑 用小点的数据类型。 8 个 bit 合并进一个 int8_t :每个占据 1/8 字节 • 考虑到我们的 i % 2 只可能是 0 和 1
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法 root->right = buildTree(n - 1); return root; } Figure 2‑13. 满二叉树产生的指数阶空间复杂度 对数阶 ?(log ?) 对数阶常见于分治算法、数据类型转换等。 例如「归并排序」,长度为 ? 的数组可以形成高度为 log ? 的递归树,因此空间复杂度为 ?(log ?) 。 再例如「数字转化为字符串」,输入任意正整数 ? ,它的位数为 log10 (?) , ?(?2) , ?(2?) 。 37 3. 数据结构简介 3.1. 数据与内存 3.1.1. 基本数据类型 谈到计算机中的数据,我们能够想到文本、图片、视频、语音、3D 模型等等,这些数据虽然组织形式不同,但 都是由各种基本数据类型构成的。 「基本数据类型」是 CPU 可以直接进行运算的类型,在算法中直接被使用。 ‧「整数」根据不同的长度分为 byte, short, int
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法 root->right = buildTree(n - 1); return root; } Figure 2‑13. 满二叉树产生的指数阶空间复杂度 对数阶 ?(log ?) 对数阶常见于分治算法、数据类型转换等。 例如「归并排序」,长度为 ? 的数组可以形成高度为 log ? 的递归树,因此空间复杂度为 ?(log ?) 。 再例如「数字转化为字符串」,输入任意正整数 ? ,它的位数为 log10 (?) , ?(?2) , ?(2?) 。 37 3. 数据结构简介 3.1. 数据与内存 3.1.1. 基本数据类型 谈到计算机中的数据,我们能够想到文本、图片、视频、语音、3D 模型等等,这些数据虽然组织形式不同,但 都是由各种基本数据类型构成的。 「基本数据类型」是 CPU 可以直接进行运算的类型,在算法中直接被使用。 ‧「整数」根据不同的长度分为 byte, short, int
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    3.1. 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2. 基本数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3. 数字编码 * . . . . 码。 0.1.2. 内容结构 本书主要内容包括: ‧ 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 法、常见类型、示例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 2. 复杂度 hello‑algo.com 34 return root; } Figure 2‑13. 满二叉树产生的指数阶空间复杂度 对数阶 ?(log ?) 对数阶常见于分治算法和数据类型转换等。 例如“归并排序”算法,输入长度为 ? 的数组,每轮递归将数组从中点划分为两半,形成高度为 log ? 的递 归树,使用 ?(log ?) 栈帧空间。 再例如“数字转化为字符串”,输入任意正整数
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    3.1 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 基本数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 数字编码 * . . . 码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 一定的“动态性”。 Tip 如果你感觉物理结构理解起来有困难,建议先阅读下一章,然后再回顾本节内容。 3.2 基本数据类型 当谈及计算机中的数据时,我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织 形式各异,但它们都由各种基本数据类型构成。 基本数据类型是 CPU 可以直接进行运算的类型,在算法中直接被使用,主要包括以下几种。 ‧ 整数类型 byte、short、int、long
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    3.1 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 基本数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 数字编码 * . . . 码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 度进行调整。 � 如果你感觉物理结构理解起来有困难,建议先阅读下一章,然后再回顾本节内容。 3.2 基本数据类型 当谈及计算机中的数据时,我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织 形式各异,但它们都由各种基本数据类型构成。 基本数据类型是 CPU 可以直接进行运算的类型,在算法中直接被使用,主要包括以下几种。 ‧ 整数类型 byte、short、int、long
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    3.1 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 基本数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 数字编码 * . . . 代码。 0.1.2 内容结构 本书主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 对其长度进行调整。 � 如果你感觉物理结构理解起来有困难,建议先阅读下一章“数组与链表”,然后再回顾本节内 容。 3.2 基本数据类型 谈及计算机中的数据,我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织形式 各异,但它们都由各种基本数据类型构成。 基本数据类型是 CPU 可以直接进行运算的类型,在算法中直接被使用,主要包括以下几种类型。 ‧ 整数类型 byte、short、int、long
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    3.1 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 基本数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 数字编码 * . . . 码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 一定的“动态性”。 Tip 如果你感觉物理结构理解起来有困难,建议先阅读下一章,然后再回顾本节内容。 3.2 基本数据类型 当谈及计算机中的数据时,我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织 形式各异,但它们都由各种基本数据类型构成。 基本数据类型是 CPU 可以直接进行运算的类型,在算法中直接被使用,主要包括以下几种。 ‧ 整数类型 byte、short、int、long
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    倍。但是如果你的算法不 适合 SIMD ,则可能加速达不到 4 倍;也有因为 SIMD 让访问内存更有规律,节约了指 令解码和指令缓存的压力等原因,出现加速超过 4 倍的情况。 第 1 章:化简 编译器优化:代数化简 编译器优化:常量折叠 编译器优化:举个例子 编译器优化:我毕竟不是万能的 结论:尽量避免代码复杂化,避免使用会造 成 new/delete 的容器。 简单的代码,比什么优化手段都强。
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • pdf文档 《深入浅出MFC》2/e

    我们只不过是以一个简单而基本的工具,也就是一个文字编辑器,重制我们的程序代码。 今天,C++ 提供给我们一个更好的繁殖方法:template。 复制一段既有程序代码的一个最平常的理由就是为了改变数据类型。举个例子,假设你写 了一个绘图函数,使用整数x, y 坐标;突然之间你需要相同的程序代码,但坐标值改采 第2章 C++ 的重要性質 101 #0001 int power(int base (--exponent) result *= base; #0007 return result; #0008 } long。你当然可以使用一个文字编辑器把这段码拷贝一份,然后把其中的数据类型改变 过来。有了C++,你甚至可以使用多载(overloaded)函数,那么你就可以仍旧使用相 同的函数名称。函数的多载的确使我们有比较清爽的程序代码,但它们意味着你还是必须 在你的程序的许多地方维护完全相同的算法。 这样的函数声明是以一个特殊的template 前缀开始,后面紧跟着一个参数列(本例只一 个参数)。容易让人迷惑的是其中的"class" 字眼,它其实并不一定表示C++ 的class, 它也可以是一个普通的数据类型。 只不过是表示:T 是一种类型,而此一类型 将在调用此函数时才给予。 下面就是power 函数的template 版本: 传回值必须确保为类型T,以吻合template 函数的声明。
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件10Hello算法1.00b10b20b41.10b51.2简体中文简体中文04深入深入浅出MFC
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩