积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)C++(20)

语言

全部中文(简体)(19)中文(繁体)(1)

格式

全部PDF文档 PDF(10)PPT文档 PPT(10)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    <<>> 的简写而已。 图片解释三维的板块和线程 • 之所以会把 blockDim 和 gridDim 分三维主要是因为 GPU 的业务常常涉及到三维图形学和二维图像,觉得 这样很方便,并不一定 GPU 硬件上是三维这样排列 的。 • 三维情况下同样可以获取总的线程编号(扁平化)。 • 如需总的线程数量: blockDim * shared memory ) • 刚刚已经实现了无数据依赖可以并行的 for ,那么如何把 他真正变成并行的呢?这就是板块的作用了,我们可以把 刚刚的线程升级为板块,刚刚的 for 升级为线程,然后把 刚刚 local_sum 这个线程局部数组升级为板块局部数组。 那么如何才能实现板块局部数组呢? • 同一个板块中的每个线程,都共享着一块存储空间,他就 是共享内存。在 CUDA 的语法中,共享内存可以通过定 的语法中,共享内存可以通过定 义一个修饰了 __shared__ 的变量来创建。因此我们可以 把刚刚的 local_sum 声明为 __shared__ 就可以让他从 每个线程有一个,升级为每个板块有一个了。 • 然后把刚刚的 j 换成板块编号, i 换成线程编号就好啦。 板块的共享内存( shared memory ) • 但是刚刚算出来的结果好像不对了? • 这是因为 SM 执行一个板块中的线程时,并不是全部同时执行
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , Pig(pig) 语法 来强制拷贝。 为什么很多面向对象语言,比如 Java ,都没有构造函数全家桶这些概念? • 因为他们的业务需求大多是:打开数据库,增删改查学生数据,打开一个窗口,写入一个 文件,正则匹配是不是电邮地址,应答 HTTP 请求等。 • 这些业务往往都是在和资源打交道,从而基本都是刚刚说的要删除拷贝函数的那一类,解 决这种需求,几乎总是在用 shared_ptr 脆简化:一切非基础类型的对象都是浅拷贝,引用计数由垃圾回收机制自动管理。 • 因此,以系统级编程、算法数据结构、高性能计算为主要业务的 C++ ,才发展出了这些思 想,并将拷贝 / 移动 / 指针 / 可变性 / 多线程等概念作为语言基本元素存在。这些在我们的 业务里面是非常重要的,所以不可替代。 • (试图升华文章中心主旨) 扩展阅读关键字 • 限于篇幅,此处放出一些扩展知识供学有余力的同学研究:
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 更专业的性能测试框架: Google benchmark • 手动计算时间差有点太硬核了,而且只运 行一次的结果可能不准确,最好是多次运 行取平均值才行。 • 因此可以利用谷歌提供的这个框架。 • 只需将你要测试的代码放在他的 • for (auto _: bm) • 里面即可。他会自动决定要重复多少次, 为串行的 (如果他们没办法并行调用的话)而其他 filter 可以 和他同时并行运行。这可以应对一些不方便并行,或 者执行前后的数据有依赖,但是可以拆分成多个步骤 ( filter )的复杂业务。 • 还有好处是他无需先把数据全读到一个内存数组里, 可以流式处理数据( on-fly ),节省内存。 • 不过需要注意流水线每个步骤( filter )里的工作量最 好足够大,否则无法掩盖调度
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    是一个挑战,但请放心,这是很正常的。我们可以按 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段” 在实际中,我们通常会用一些标准哈希算法,例如 MD5 , SHA‑1 , SHA‑2 , SHA3 等。它们可以将任意长度 的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。直至目前: ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 Figure 13‑3. 根据约束条件剪枝 13.1.3. 框架代码 接下来,我们尝试将回溯的“尝试、回退、剪枝”的主体框架提炼出来,提升代码的通用性。 13. 回溯 hello‑algo.com 250 在以下框架代码中,state 表示问题的当前状态,choices 表示当前状态下可以做出的选择。 /* 回溯算法框架 */ void backtrack(State *state,
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    忘曲线”来 复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一” 般无法仅凭复杂度来选择 ? = 8 之下的最优解法。但对于 ? = 85 就很好选了,这时增长趋势已经占主导了。 51 第 3 章 数据结构 Abstract 数据结构如同一副稳固而多样的框架。 它为数据的有序组织提供了蓝图,算法得以在此基础上生动起来。 第 3 章 数据结构 hello‑algo.com 52 3.1 数据结构分类 常见的数据结构包括数组、链表、栈、队列、哈希表 并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA‑1、SHA‑2 和 SHA‑3 等。它们可以将任意长 度的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    一个挑战,但请放心,这是很正常的。我们可以按 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段 多少,所以一般无法仅凭复杂 度来选择 ? = 8 之下的最优解法。但对于 ? = 85 就很好选了,这时增长趋势已经占主导了。 49 第 3 章 数据结构 � 数据结构如同一副稳固而多样的框架。 它为数据的有序组织提供了蓝图,使算法得以在此基础上生动起来。 第 3 章 数据结构 hello‑algo.com 50 3.1 数据结构分类 常见的数据结构包括数组、链表、栈、队列、哈希 并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA‑1、SHA‑2、SHA3 等。它们可以将任意长度 的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    ,但请放心,这是很正常的。 我们可以按照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一” 是多少,所以一般无法仅凭复杂度来选择 ? = 8 之下的最优解法。但对于 ? = 85 就很好选了,这时增长趋势已经占主导了。 51 第 3 章 数据结构 � 数据结构如同一副稳固而多样的框架。 它为数据的有序组织提供了蓝图,算法得以在此基础上生动起来。 第 3 章 数据结构 hello‑algo.com 52 3.1 数据结构分类 常见的数据结构包括数组、链表、栈、队列、哈希表 并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA‑1、SHA‑2 和 SHA‑3 等。它们可以将任意长 度的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    忘曲线”来 复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一” 般无法仅凭复杂度来选择 ? = 8 之下的最优解法。但对于 ? = 85 就很好选了,这时增长趋势已经占主导了。 51 第 3 章 数据结构 Abstract 数据结构如同一副稳固而多样的框架。 它为数据的有序组织提供了蓝图,算法得以在此基础上生动起来。 第 3 章 数据结构 www.hello‑algo.com 52 3.1 数据结构分类 常见的数据结构包括数组、链表、栈、队列 并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA‑1、SHA‑2 和 SHA‑3 等。它们可以将任意长 度的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , 关于作者(续) • 我是 Taichi Blend 的作者( https://github.com/taichi-dev/taichi_blend ) 关于作者(再续) • 主导 Zeno 节点仿真框架的开发( https://github.com/zenustech/zeno ) 什么是编译器 • 编译器,是一个根据源代码生成机器码的程序。 • > g++ main.cpp -o a.out 旨在补充标准库没有的常用功能 6. bombela/backward-cpp - 实现了 C++ 的堆栈回溯便于调试 7. google/googletest - 谷歌单元测试框架 8. google/benchmark - 谷歌性能评估框架 9. glfw/glfw - OpenGL 窗口和上下文管理 10.libigl/libigl - 各种图形学算法大合集 fmt - 使用这个神奇的格式化库
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • pdf文档 面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭

    没有问题,允许合入 开发者 代码仓库 静态代码评审的样子 为何代码评审阶段? 2K Bugs 12K Warnings 225K Code Smell “找到几万个问题,没法修” “这是以前的业务逻辑,不用修” “这别人写的代码,不关我事” 大量报告引起不适 刚写的代码立即自动扫描,程序员强迫使用 只体现新增代码问题,责任边界清晰 评审流程多人督促 渐进式开启更多检查器 增量分析减少不适
    0 码力 | 39 页 | 6.88 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件080206Hello算法1.00b41.10b51.2简体中文简体中文01面向亿行代码静态分析系统设计实践肖枭
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩