8 4 Deep Learning with Python 费良宏 “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib 深度学习中的开发框架框架 THEANO 学院派血统,Montreal University 非常灵活,非常复杂 通过底层借口可以做到大量的定制 衍生了大量的丰富的项目Keras0 码力 | 49 页 | 9.06 MB | 1 年前3
07 FPGA 助力Python加速计算 陈志勇软件仿真和硬件仿真 7 Ø 近期很热门的话题 Ø 目的:提高算法计算效率,缩短算法开发时间和验证时间 Ø 加速框架: Ø 分布式计算:多节点计算 Ø 并行计算:多处理器、多线程计算 Ø 分布式计算引擎:Spark Ø 并行计算语言(函数式编程):Scala Ø 加速方法: Ø 算法的优化 Ø 算法的并行化 Ø CPU: 多核 CPU Ø GPU: 多核处理器 Ø 硬件仿真:算法计算在FPGA里实现,输入和输出在0 码力 | 34 页 | 6.89 MB | 1 年前3
2_FPGA助力Python加速计算_陈志勇软件仿真和硬件仿真 7 Ø 近期很热门的话题 Ø 目的:提高算法计算效率,缩短算法开发时间和验证时间 Ø 加速框架: Ø 分布式计算:多节点计算 Ø 并行计算:多处理器、多线程计算 Ø 分布式计算引擎:Spark Ø 并行计算语言(函数式编程):Scala Ø 加速方法: Ø 算法的优化 Ø 算法的并行化 Ø CPU: 多核 CPU Ø GPU: 多核处理器 Ø 硬件仿真:算法计算在FPGA里实现,输入和输出在0 码力 | 33 页 | 8.99 MB | 1 年前3
FPGA助力Python加速计算 陈志勇 软件仿真和硬件仿真 7 ➢ 近期很热门的话题 ➢ 目的:提高算法计算效率,缩短算法开发时间和验证时间 ➢ 加速框架: ➢ 分布式计算:多节点计算 ➢ 并行计算:多处理器、多线程计算 ➢ 分布式计算引擎:Spark ➢ 并行计算语言(函数式编程):Scala ➢ 加速方法: ➢ 算法的优化 ➢ 算法的并行化 ➢ CPU: 多核 CPU ➢ GPU: 多核处理器 ➢ 硬件仿真:算法计算在FPGA里实现,输入和输出在0 码力 | 34 页 | 4.19 MB | 1 年前3
共 4 条
- 1













