8 4 Deep Learning with Python 费良宏 基于对多个层的特征或者表象的学习,形成一个由低级 到高级的层次结构特征 传统的机器学习关注于特征工程,深度学习关注于端到 端的基于原始数据的学习 为什么需要深度学习? 深度学习- 举例 深度学习 - 神经网络 是一种模仿生物神经网络(例如大脑)的结构和功能的计 算模型 是一种非线性统计性数据建模工具,对输入和输出间复 杂的关系进行建模 一组简单可以训练的数学单元集合,共同学习复杂的功 能 深度学习 - 训练 图像帧、每帧的像素、每一帧的deltas 值等等 文本– 字符、词、从句、句子等等 语音– 音频、频段、波长、调制等等 ... 深度学习的优势 特性自动推导和预期结果的优化调整 可变的自动学习的健壮性 重用性-相同的神经网络的方法可用于许多应用和数据 类型 通过利用GPU的大规模并行计算-可扩展的大容量数据 深度学习的开发框架 Torch (NYU,2002), Facebook AI, Google Deepmind Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib 深度学习中的开发框架框架 THEANO 学院派血统,Montreal University 非常灵活,非常复杂 通过底层借口可以做到大量的定制0 码力 | 49 页 | 9.06 MB | 1 年前3
1 藤井美娜 Python的NLP实战分享 如何实现合同风险预测模型 ############################################# | section3 ROUGE RIBES word2vec TF-IDF 机器翻译的手法 神经网络 向量化的典型手法 $ from RIBES import RIBESevaluator $ ribes = RIBESevaluator() $ score = ribes.eval([target]0 码力 | 36 页 | 3.95 MB | 1 年前3
3 Python的NLP实战分享 如何实现合同风险预测模型 藤井美娜############################################# | section3 ROUGE RIBES word2vec TF-IDF 机器翻译的手法 神经网络 向量化的典型手法 $ from RIBES import RIBESevaluator $ ribes = RIBESevaluator() $ score = ribes.eval([target]0 码力 | 33 页 | 1.67 MB | 1 年前3
9 盛泳潘 When Knowledge Graph meet Python by Y X is purchased by Y X is bought by Y 基于机器学习的关系抽取方法 • 有监督的关系抽取方法(e.g., 基于特征工程的方法,基于核函数的方法,基于神经网络的方法) • 弱监督的关系抽取方法 Distant Supervision(远程监督),即如果两个实体之间存在某种关系,则所有包含这两个实体的句子都 表达了这种关系,这些句子的集合被称为一个“包”。0 码力 | 57 页 | 1.98 MB | 1 年前3
Hello 算法 1.0.0b1 Python版字典中的所有字按照拼音顺序存储在数组中,然后使用与日常 查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。 深度学习。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建 的。数组是神经网络编程中最常使用的数据结构。 4.2. 链表 � 引言 内存空间是所有程序的公共资源,排除已占用的内存,空闲内存往往是散落在内存各处的。我0 码力 | 178 页 | 14.67 MB | 1 年前3
Hello 算法 1.0.0b2 Python版字典中的所有字按照拼音顺序存储在数组中,然后使用与日常 查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。 深度学习。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建 的。数组是神经网络编程中最常使用的数据结构。 4.2. 链表 � 引言 内存空间是所有程序的公共资源,排除已占用的内存,空闲内存往往是散落在内存各处的。我0 码力 | 186 页 | 15.69 MB | 1 年前3
Hello 算法 1.0.0b4 Python版表。例如,我们有一个字符到其 ASCII 码的映射,可以将字符的 ASCII 码值作为索引,对应的元素存 放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 ‧ 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,邻接矩阵是图的常见 表示之一,它实质上是一个二维数组。0 码力 | 329 页 | 27.34 MB | 1 年前3
Hello 算法 1.1.0 Python版找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 ‧ 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实 际上是一个二维数组。0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.0.0b5 Python版表。假如我们想要实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存 放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 ‧ 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实 际上是一个二维数组。0 码力 | 361 页 | 30.64 MB | 1 年前3
Hello 算法 1.0.0 Python版找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 ‧ 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实 际上是一个二维数组。0 码力 | 362 页 | 17.54 MB | 1 年前3
共 11 条
- 1
- 2













