积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(42)Python(42)

语言

全部英语(20)中文(简体)(20)

格式

全部PDF文档 PDF(42)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 42 个.
  • 全部
  • 后端开发
  • Python
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 02 黄盈樟 MicroPython与硬件开发

    MicroPython与硬件开发 黄盈樟 个人简介 2019年11月10日8时10分 资深嵌入式开发工程师,近几年的工作领域为开源无人机系统应用、物联网全系统 应用,擅长语言是C/C++/Python, 曾于国内多个重点大学开展无人机应用项目, 在国内多所二本院校担任物联网专业的课程讲师。 目录 CONTENTS 硬件发展史与开发语言 MicroPython发展史 MicroPython实例 MicroPython实例 物联网全栈开发 1 硬件发展史与开发语言 根据摩尔定律的发展,硬件的性能越来越好,随之对开发语言的 要求也越高。 电子管时代 中小型机时代 嵌入式系统时代 物联网时代 2 MicroPython发展史 MicroPython的缘起,在教育领域中的应用。 MicroPython发明者 • Damien George Mu编辑器及MicroPython贡献者 • • Exceptions • with , yield from, etc. • 增加 3.5’s async and await。 • 根据嵌入式运行环境,增加了硬件专用库和删减了部分库。 MicroPython支持的硬件开发板 • PyBoard • WiPy • ESP8266 • ESP32 • STM32F4 • NUCLEO boards • Espruino Pico Mi
    0 码力 | 23 页 | 1.77 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 Python 的 list 可以自由存储各种基本数据类型和对象 """ list = [0, 0.0, 'a', False] 3.1.2. 计算机内存 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达 到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 算法运行中,相关数据都被存储在内
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Python版

    。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 Python 的 list 可以自由存储各种基本数据类型和对象 """ list = [0, 0.0, 'a', False] 3.1.2. 计算机内存 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达 到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 算法运行中,相关数据都被存储在内
    0 码力 | 186 页 | 15.69 MB | 1 年前
    3
  • pdf文档 07 FPGA 助力Python加速计算 陈志勇

    人工智能、数据分析等 Ø Python 的生态环境:软件平台、硬件平台、方案合作伙伴 等 Ø 用 Python 如何开发嵌入式产品?如何实现 算法硬件加速? Ø 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 Ø 本次题目的主要内容 Ø Python <- tools -> FPGA Ø 算法硬件加速:用FPGA的逻辑硬件实现算法加速 Ø 算法如何在FPGA 中实现?如何用”与或非”门电路去 新的嵌入式计算平台:MCU,DSP,FPGA,GPU、ASSP等 Ø 嵌入式计算: Ø 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适用于应用系统对功能、可靠 性、成本、体积、功耗有严格要求的专用计算机系统,它一般由嵌入式微处理器、外围硬件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 Ø 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. Ø 加速计算: Array)是在PAL、GAL等可编程器件的基础上进一步发展的 产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路 的不足,又克服了原有可编程器件门电路数有限的缺点。 Ø 设计语言:硬件描述语言(HDL)是一种用来设计数字逻辑系统和描述数字电路的语言,常用 的主要有VHDL、Verilog HDL Ø 信号处理:数据可以并行处理 Ø 主要实现功能: Ø 组合逻辑 -》计数器 -》算法实现
    0 码力 | 34 页 | 6.89 MB | 1 年前
    3
  • pdf文档 FPGA助力Python加速计算 陈志勇

    人工智能、数据分析等 ➢ Python 的生态环境:软件平台、硬件平台、方案合作伙伴等 ➢ 用 Python 如何开发嵌入式产品?如何实现 算法硬件加速? ➢ 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 ➢ 本次题目的主要内容 ➢ Python <- tools -> FPGA ➢ 算法硬件加速:用FPGA的逻辑硬件实现算法加速 ➢ 算法如何在FPGA 中实现?如何用”与或非”门电路去写 新的嵌入式计算平台:MCU,DSP,FPGA,GPU、ASSP等 ➢ 嵌入式计算: ➢ 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适用于应用系统对功能、可靠 性、成本、体积、功耗有严格要求的专用计算机系统,它一般由嵌入式微处理器、外围硬件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 ➢ 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. ➢ 加速计算: Array)是在PAL、GAL等可编程器件的基础上进一步发展的 产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路 的不足,又克服了原有可编程器件门电路数有限的缺点。 ➢ 设计语言:硬件描述语言(HDL)是一种用来设计数字逻辑系统和描述数字电路的语言,常用 的主要有VHDL、Verilog HDL ➢ 信号处理:数据可以并行处理 ➢ 主要实现功能: ➢ 组合逻辑 -》计数器 -》算法实现
    0 码力 | 34 页 | 4.19 MB | 1 年前
    3
  • pdf文档 2_FPGA助力Python加速计算_陈志勇

    人工智能、数据分析等 Ø Python 的生态环境:软件平台、硬件平台、方案合作伙伴等 Ø 用 Python 如何开发嵌入式产品?如何实现 算法硬件加速? Ø 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 Ø 本次题目的主要内容 Ø Python <- tools -> FPGA Ø 算法硬件加速:用FPGA的逻辑硬件实现算法加速 Ø 算法如何在FPGA 中实现?如何用”与或非”门电路去写 新的嵌入式计算平台:MCU,DSP,FPGA,GPU、ASSP等 Ø 嵌入式计算: Ø 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适用于应用系统对功能、可靠 性、成本、体积、功耗有严格要求的专用计算机系统,它一般由嵌入式微处理器、外围硬件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 Ø 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. Ø 加速计算: Array)是在PAL、GAL等可编程器件的基础上进一步发展的 产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路 的不足,又克服了原有可编程器件门电路数有限的缺点。 Ø 设计语言:硬件描述语言(HDL)是一种用来设计数字逻辑系统和描述数字电路的语言,常用 的主要有VHDL、Verilog HDL Ø 信号处理:数据可以并行处理 Ø 主要实现功能: Ø 组合逻辑 -》计数器 -》算法实现
    0 码力 | 33 页 | 8.99 MB | 1 年前
    3
  • pdf文档 8 安翔 Python助力物联网项目开发

    • 服务端程序开发 •典型 IoT 项目剖析 – 智能家居系统 •典型 IoT 项目剖析 – 智能家居系统 – 技术栈 • 单片机程序开发 • 使用多种硬件接口 • 驱动各种外设 • 嵌入式Linux软件开发 • 使用多种硬件接口 • 驱动各种外设 • 数据库存储 • 网络通信 • Web程序开发 • 数据存储 • 数据可视化 Python 各个击破 IoT 技术栈 • • Python 开发 IoT 服务端 •Python 各个击破 IoT 技术栈 -- MicroPython 开发 IoT 终端 • MicroPython 支持数十种单片机 • 支持多种硬件接口:GPIO、I2C、SPI、 UART、PWM….. • 开发便捷: 直接通过文件系统编写和运行程 序, 无需烧写器 • 相比传统单片机开发模式,减少了对IC厂家 资源的依赖 •Python •Python 各个击破 IoT 技术栈 -- Python 开发 IoT 网关 • 构建Python环境:很多IC厂商的BSP已经对 Python有了很好的支持,若没有则自主移植 • 支持多种硬件接口: pyserail等,如果没有 通过C语言开发 • 支持多种数据库:sqlite、mysql…. • 支持多种网络库:requests、hbmqtt…. • 性能敏感的模块采用C/C++编写库,供 Python应用程序调用
    0 码力 | 22 页 | 5.00 MB | 1 年前
    3
  • pdf文档 7 谢彬彬 用MicroPython触摸物理世界

    你尽然可以这样 不行!我要搞定你 好啦!看你还不乖乖的 邂逅的那个夏天 动手打发无聊的日子 相遇-可以编程的硬件 便宜是便宜,但太难了! 8051 8位单片机 Coretex M0 32位MCU 对于初学者比上一个更难 太难了 放弃了! 相遇-开源世界的可编程硬件 Arduino 树莓派 性能强大,贵到窒息! 简单、价格还行 对于新手友好 还是放弃了 穷使我学会选择 相遇-最终选择 还便宜 相遇 MicroPython ESP32 WIFI+Bluetooth 主角 相遇 32bit微处理器 MicroPython 精简优化 子集 相遇 谁接触过硬件开发呢? 相遇 对硬件感兴趣的同学请举手 原来你是这样子的 nodemcu ESP32 PyBoard WiPy 相识-支持MicroPython的开发板 Cortex M4 32位MCU 支持I
    0 码力 | 33 页 | 1.20 MB | 1 年前
    3
  • pdf文档 PyConChina2022-杭州-ARM芯片的Python+AI算力优化-朱宏林

    Python + AI 优化工作,以及在 ARM 云平台上部署 Python + AI 任务的最佳实践。 深度学习 • 广泛使用的深度学习框架 • TensorFlow、PyTorch • 结合硬件(ARM 服务端芯片) • 倚天 710 • AWS graviton • 矩阵乘法 • 为什么矩阵乘法是深度学习的核心 • Conv、Linear、Transformers 来源: Why 内存布局:矩阵分块;重排 • 向量化指令:AVX、NEON 原始算法 展开4x1 向量化 GEMM • 优化 GEMM • 内存布局:矩阵分块;重排 • 向量化指令:AVX、NEON • 硬件加速 • Nvidia Volta 架构引入 tensor core • Intel AMX, Advanced Matrix Extension • ARM SME, Scalable Matrix Google Brain 团队 • float32、float16、bfloat16(FP32、FP16、BF16) • 特点 • 表示范围和 FP32 一致 • 转换便利 • 节省存储空间 • 硬件指令支持 ARMv8.6 bf16 扩展 • bf16 扩展 • ARMv8.6 • 矩阵乘法指令 BFMMLA • 类型转换指令 BFCVT • BFMMLA • 128 bit 向量寄存器
    0 码力 | 24 页 | 4.00 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Python版

    B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 方法就是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够 反映真实情况,但也存在较大局限性。 难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。例如,在某台计算机中,算法 A 的运行时 间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要在各种 机器上进行测试,而这是不现实的。 成简单案例的复杂度分析。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何 操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 * 需要 10 ns,打印操作需要 5 ns 等。 树形结构:树、堆、哈希表,元素存在一对多的关系。 ‧ 网状结构:图,元素存在多对多的关系。 3. 数据结构 hello‑algo.com 37 3.1.2. 物理结构:连续与离散 在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 在算法运行过程中,相关数据都存储在内存中。
    0 码力 | 329 页 | 27.34 MB | 1 年前
    3
共 42 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
02黄盈MicroPython硬件开发Hello算法1.00b1Python0b207FPGA助力加速计算陈志勇安翔联网项目彬彬触摸物理世界PyConChina2022杭州ARM芯片AI算力优化朱宏林0b4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩