2 使用Python训练和部署低精度模型 张校捷使用Python训练和部署低精度模型 (TensorFlow版) 张校捷 2019/9/21 目录 CONTENTS 低精度的概念和意义 TensorFlow的FP16模型 TensorRT的FP16/Int8模型 总结 1 低精度的概念和意义 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 深度学习模型中实数的表示 FP32: E8M23 FP16: ResNet-50-v1.5 3.3X speedup SSD-RN50-FPN-640 2.5X speedup FP16浮点数(E5M10)的表示范围 FP16模型的训练方法 Int8模型的推断过程 2 TensorFlow的FP16模型 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 TensorCores适用条件 1. 卷积:K(输入通道),C(输出通道) 2 2=1 TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1 TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1 TensorFlow手动转换模型 import tensorflow as tf import numpy as numpy input = tf.placeholder(dtype=tf.float32, shape=[None0 码力 | 24 页 | 981.45 KB | 1 年前3
1 藤井美娜 Python的NLP实战分享 如何实现合同风险预测模型Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |######### | section1 收集语料 前处理 section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 NLP基础 22% |################## | section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 有时候会把语义分析的结果做成 feature,放进机器学习模型里。 EDA NLP基础 25% |###################0 码力 | 36 页 | 3.95 MB | 1 年前3
3 Python的NLP实战分享 如何实现合同风险预测模型 藤井美娜Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |####### | section1 收集语料 前处理 分词 收集语料 前处理 分词 向量化 (Vectorization) 机器学习模型 各种OUTPUT 语义解析 NLP基础 19% |################ | section1 收集语料 前处理 分词 向量化 机器学习模型 语义解析 有时候会把语义分析的结果feature, 放进机器学习模型里。 各种OUTPUT EDA NLP基础 23% |###################0 码力 | 33 页 | 1.67 MB | 1 年前3
Python的智能问答之路 张晓庆 智能问答举例-Community QA • 数据结构化 Ø 用问答对的方式进行知识表示 Ø 知识点:由若干个问题(相似问)、以及 能回答这些问题的答案组成 Ø 知识库:由若干个知识点组成 • 模型 Ø 找到和用户query最匹配的问题,进而给 出对应的答案 • 特点 Ø 易于维护 Ø 符合实际业务场景 Ø 为什么用这种形式? ü 减轻人工维护答案的工作量 ü 同一知识点下的问题语义相同,是很好的 Ø 解决什么问题? • 数据 Ø 标注数据 Ø 训练数据 Ø 测试数据 Ø 评估数据 • 建模 Ø 输入输出? Ø 工作流? • 语言工具 Ø C++ Ø Python Ø Java Ø GO • 模型 Ø 统计模型 Ø 传统机器学习模型 Ø 深度学习模型 Ø 如何选择?是否组合? • 评估 Ø 评估指标 Ø 工具 • 迭代 Ø 策略? • 服务化 Ø 服务框架 Ø 性能 Ø 用知识库内的相似问,构造句对训练数 据,训练有监督的模型 Ø 基于通用领域的问答对,构造句对训练 数据,训练通用领域内有监督的模型 Ø 模型融合 Ø 判断(query,question)相关性打分, 返回top n作为最终命中知识点,给出对 应知识点的答案回复用户 • 依赖工具 Ø Python及第三方扩展包 各个击破-模型 各个击破-数据 • 开源数据抓取&清洗 • 依赖工具0 码力 | 28 页 | 2.60 MB | 1 年前3
Hello 算法 1.0.0b4 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度 13 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. 时间复杂度 . . . . . 一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容包括: ‧ 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 法、常见类型、示例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 我们按照说明书一步步操作,就能组装出精美的积木模型。 1. 初识算法 hello‑algo.com 11 Figure 1‑5. 拼装积木 两者的详细对应关系如下表所示。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得注意的是,数据结构与算法独立于编程语言0 码力 | 329 页 | 27.34 MB | 1 年前3
Hello 算法 1.1.0 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 Abstract 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.0.0b5 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第 2 章 复杂度分析 16 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 迭代与递归 . . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 14 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结构 � 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 17 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法需要在规定的输入范围内,可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。0 码力 | 361 页 | 30.64 MB | 1 年前3
Hello 算法 1.0.0 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 � 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。0 码力 | 362 页 | 17.54 MB | 1 年前3
Hello 算法 1.0.0b2 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度分析 12 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. 时间复杂度 . . . . 者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结 且已经习惯将它们 应用到日常生活中。接下来,我将介绍两个具体例子来佐证。 例一:拼积木。一套积木,除了有许多部件之外,还会附送详细的拼装说明书。我们按照说明书上一步步操作, 即可拼出复杂的积木模型。 如果从数据结构与算法的角度看,大大小小的「积木」就是数据结构,而「拼装说明书」上的一系列步骤就是 算法。 例二:查字典。在字典中,每个汉字都有一个对应的拼音,而字典是按照拼音的英文字母表顺序排列的。假设0 码力 | 186 页 | 15.69 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Python 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 www.hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 www.hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。0 码力 | 364 页 | 18.43 MB | 10 月前3
共 120 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













