积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(208)Python(208)PyWebIO(67)Django(2)Flask(1)

语言

全部中文(简体)(128)英语(67)中文(繁体)(1)

格式

全部PDF文档 PDF(138)其他文档 其他(69)DOC文档 DOC(1)
 
本次搜索耗时 0.048 秒,为您找到相关结果约 208 个.
  • 全部
  • 后端开发
  • Python
  • PyWebIO
  • Django
  • Flask
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 3 基于Azure的Python机器学习 王大伟

    基于Azure的Python机器学习 平安金融壹账通大数据研究院 微软MVP 王大伟 目录 CONTENTS Azure与Python 如何用Azure完成机器学习 Azure与自动机器学习 Azure的相关学习资料 Azure与Python 日渐流行的Python TIOBE给出的排行榜是具有权威性质的,是判断语言流行趋势的指标。 TIOBE排行榜的网址是:https://tiobe com/tiobe-index/ 日渐流行的Python 日渐流行的Python 日渐流行的Python 为什么用Python完成机器学习 Python的优势:易学习、大量不断更新的各领域库、尤其适合完成机器学习相关任务。 Python机器学习相关库介绍: Sklearn机器学习地图 Azure是什么? Azure 是一个不断扩展的云计算服务集合。通过 Azure,公司和组织可以加快发展步伐,提高工作 。 如何用Azure完成机器学习 Azure机器学习 进入Azure服务页面 :https://portal.azure.com/#home Azure机器学习 通过点击“所有服务”,我们可以看到Azure可提供的服务非常多 找到我们本次需要的“AI + 机器学习” Azure机器学习 在“机器学习服务工作区”中可以看到已有的服务 Azure机器学习 选择“添加”按钮,填写相关信息
    0 码力 | 31 页 | 3.69 MB | 1 年前
    3
  • word文档 python3学习手册

    python3学习手册 简介: Python官网: h�ps://www.python.org Python由Guido van Rossum于1989年底发明,于1991年发行第一版, Python源代码遵循GPL协议 Python是一种解释型、面向对象、动态数据类型、可交互的语言 python2.0于2000-10-16发布,于2020年1月1日停止更新2.x版本, Python-2.7成为最后一个py 0 2016-12-23 3.12.0 2023-10-02 3.6.8 2018-12-24 版权声明: 本文档以开源的形式发布,所有条款如下: (1)无担保:作者不保证文档内容的准确无误,亦不承担由于使用此文档所 导致的任何后果 (2)自由使用:任何人可以出于任何目的而自由地 阅读/链接/打印/转载/引 用/分发/再创作 此文档,无需任何附加条件 若您 阅读/链接/打印/转载/引用/分发/再创作 阅读/链接/打印/转载/引用/分发/再创作 本文档,则说明接受以 上2个条款。 作者:李茂福 2022-03-26 ~ 2024-03-08 ★第0章、linux执行python脚本的方式 python安装路径: 操 作 系 统 python 版本 安装路径 windows 2.7 C:\Python27 windows 3.10 C:\Users\ 用 户 名 \Ap
    0 码力 | 213 页 | 3.53 MB | 1 年前
    3
  • pdf文档 5 Python深度学习实践

    深度学习实践 from Tensorflow to AI-Hub 王顺 – Google Cloud 目录 CONTENTS 从零开始 初步修改 业务升级 实践指南 1 从hello world开始 以深度学习的第一个案例MNIST为例 学习Tensorflow框架的使用及代码编写风格 理解TF Mac CPU运行结果 GPU运行结果 TPU运行结果 TPU的创建和使用 TPU的创建和使用 TPU训练MNIST的改动 TPU训练MNIST的改动 https://www.tensorflow.org/guide/distribute_strateg y resolver = tf.distribute.cluster_resolver.TPUClusterResolver() tf.tpu.experimental.initialize_tpu_system(resolver) 进 如何能做的更好? TPU Pod BERT 训练时间短 https://github.com/google-research/bert Data 数据不均 • Why are my tip predictions bad in the morning hours? 16 Chicago Taxi Cab Dataset Tensorflow/Keras中的网络 Custom
    0 码力 | 38 页 | 4.85 MB | 1 年前
    3
  • pdf文档 许振影 Python 深度学习技术在医学领域的应用与前景

    Python深度学习技术在医 疗领域的应用与前景 许振影 目录 CONTENTS Python的数据科学生态 深度学习在医疗领域应用实践 Python的数据科学生态 •Python的数据科学生态 •Python的数据科学生态 •Python的数据科学生态 Kdnuggets&Kaggle :Deep Learning Framework Power Scores 2018 深度学习 深度学习 在医疗领域应用实践 深度学习在医疗领域论文情况 Kwak G H J, Hui P. DeepHealth: Deep Learning for Health Informatics[J]. arXiv preprint arXiv:1909.00384, 2019. 机器视觉在医学领域应用 物理驱动 1898-1995 X光、超声、核磁共振 热成像、同位素成像 应用驱动 1990- 优化诊断与治疗方法 肺结节处理案例-预处理 分割肺实质: 将CT图像中除肺部以外的无用信息剔除 肺部CT预处理流程 肺部区域结构示意 肺结节处理案例-工程 DataLoader Model Trainer Predict 肺结节处理案例-工程 机器视觉在医学领域应用 自然语言处理在医疗中的应用 自然语言处理在医疗中的应用 医疗应用与前景 • 起步阶段 标准制定 FDA,CFDA认证
    0 码力 | 17 页 | 1.84 MB | 1 年前
    3
  • pdf文档 PyConChina2022-上海-基于Python的深度学习框架设计与实现-刘凡平

    基于Python的深度学习框 架设计与实现 主讲人: 刘凡平 介绍大纲 一、背景 二、原理:深度学习框架的一般性结构 三、设计 四、应用案例 五、思考 一、背景 深度学习框架是包含深度学习模型设计、训练和验证的一套标准接口、特性库和工具包,集成深度学习 的算法封装、数据调用以及计算资源的使用,同时面向开发者提供了开发界面和高效的执行平台,是算法工 程师的必备工具之一。 美国 美国互联网对AI底层技术战略性投入力度较大,但中国的AI产业主要受需求拉动,大多数人工智能 公司布局应用层。 一、背景:深度学习框架的演进 一、背景:深度学习框架的重要性 二、原理:深度学习框架结构 ����� ��������� � � � ����� ���������� ������� ��������� �� �� � � � ������� ������ ������ ���� ��� 面向应用服务提供解 决方案或一般性方法。 提供模型生命周期中 科配置的各类功能组件。 实现框架最基础、最 核心的功能,帮助开发者 屏蔽底层硬件技术细节。 三、设计:最小化的深度学习框架 从模型的设计者角度思考,一个模型设计的最小使用内容。 三、设计:最小MVP深度学习框架的层次逻辑 � � � � Datasets DataLoader ABCDataset
    0 码力 | 15 页 | 2.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    Release 1.1.0 2024‑04‑15 序 两年前,我在力扣上分享了“剑指 Offer”系列题解,受到了许多读者的鼓励和支持。在与读者交流期间,我 最常被问的一个问题是“如何入门算法”。逐渐地,我对这个问题产生了浓厚的兴趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单、直接且有效。然而刷题就如同玩“扫雷”游戏,自学能力 强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。 本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请各位老师和同学批评
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    Release 1.0.0 2024‑02‑09 序 两年前,我在力扣上分享了“剑指 Offer”系列题解,受到了许多读者的鼓励和支持。在与读者交流期间,我 最常被问的一个问题是“如何入门算法”。逐渐地,我对这个问题产生了浓厚的兴趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单、直接且有效。然而刷题就如同玩“扫雷”游戏,自学能力 强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请 各位老师和同学批评指正。
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free 确定整体pipeline
 3. 再考虑优化 • 对于⼈人⼯工智能项⽬目:迭代周期更更⻓长,更更是如此 以BERT服务为例 • BERT:
 TODO: ⼀一句句话解释
 • 横扫多项NLP任务的SOTA榜 • 惊⼈人的3亿参数 以BERT服务为例 • Self Attention机制 • 预训练 + Finetune 以BERT服务为例 • 完型填空任务:
 Happy birthday ⼤大家⼀一开始如何着⼿手优化 • Profile before Optimizing • 建⽴立闭环 2 了解你的资源 cpu/内存/io/gpu GPU为什么“快”? 计算⼒对⽐ • GFLOPS/s
 
 每秒浮点数计算次数 摩尔定律的限制 • “集成电路路上可容纳的晶体管数⽬目,约每⼗十⼋八个⽉月便便会增加⼀一倍”
 
 CPU更更多⽤用在了了Cache(L1/L2/L3)和Control

    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Python 版

    Release 1.2.0 2024‑12‑06 序 两年前,我在力扣上分享了“剑指 Offer”系列题解,受到了许多读者的鼓励和支持。在与读者交流期间,我 最常被问的一个问题是“如何入门算法”。逐渐地,我对这个问题产生了浓厚的兴趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单、直接且有效。然而刷题就如同玩“扫雷”游戏,自学能力 强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。 本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请各位老师和同学批评
    0 码力 | 364 页 | 18.43 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 Python版

    Offer》系列题解,受到了许多同学的喜爱和支持。在与读者的交流期间, 最常收到的一个问题是“如何入门学习算法”。我逐渐对这个问题产生了浓厚的兴趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单直接且有效。刷题就如同玩“扫雷”游戏,自学能力强的同 学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通读教材 书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了大部分 历、准备笔试面试已经占据了大部分 精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,即使不是最优解, 也至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 识地图”,带你了解不同“地雷”的形状大小和分布位置,让你掌握各种“排雷方法”。有了这些本领,相信 你可以更加自 你可以更加自如地应对刷题和阅读文献,逐步构建起完整的知识体系。 本书中的代码附有可一键运行的源文件,托管于 github.com/krahets/hello‑algo 仓库。动画在 PDF 内的 展示效果受限,可访问 hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读。” ——邓俊辉,清华大学计算机系教授
    0 码力 | 361 页 | 30.64 MB | 1 年前
    3
共 208 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 21
前往
页
相关搜索词
基于AzurePython机器学习大伟python3手册深度实践10许振影技术医学领域应用前景PyConChina2022上海框架设计实现刘凡平Hello算法1.11.0性能优化1.2简体中文简体中文0b5
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩