1_丁来强_开源AIOps数据中台搭建与Python的作用开源⽅方案与Python作⽤用 1 关于AIOps 根据Gartner的报告,AIOps将在未来5-10年年落地开花,并集中统⼀一 各种Ops平台 IT运维的⽬目标/KPI 1 2 3 IT运维的挑战 • 复杂度越来越⾼高: • 架构演变:SaaS、多云、容器器、微服务等 • 数据孤岛越来越多:⼤大数据的3V(容量量、变化、种类) • 成本越来越⾼高: • 业务中断成本 • AIOps系统(常规层次) AIOps系统架构 • 场景应⽤用 • 智能监测系统 • ⾃自动化系统 • ⼯工单知识库 • 数据湖 • 监控⽣生态系统 • 数据源 数据的摄取挑战 • 各种来源: • SaaS、多云、容器器、微服务、主机、应⽤用等 • 各种数据样式: • Log、Tracking、Event;Metrics、IoT data;⽹网络数据; • 基于模式识别正常⾏行行为与异常⾏行行为。 根因判断 修剪⽹网络并提供有效问题的关系链接。 规范性建议 对问题进⾏行行分类,并基于过去⽅方案提供有效建议。 拓拓扑 提供拓拓扑能⼒力力强化上下⽂文与前述的准确度 算法落地的直接挑战 • 数据不不全,质量量⽋欠佳 • 团队缺少懂的⼈人 • ⼯工具不不好⽤用 • ⼯工程化不不易易 算法落地的趋势 • ⾼高薪机会让更更多⼈人⼈人员会进去这个领域 • 框架使得学习⻔门槛降低:不不需要博⼠士就能做0 码力 | 48 页 | 17.54 MB | 1 年前3
Flask入门教程章:模板 第 4 章:静态文件 第 5 章:数据库 第 6 章:模板优化 第 7 章:表单 第 8 章:用户认证 第 9 章:测试 第 10 章:组织你的代码 第 11 章:部署上线 小挑战 后记 2 Flask 入门教程 这是一本 Flask 入门教程,提供了入门 Flask 所需的最少信息,你可以跟随本书自 己动手开发一个简单的 Watchlist 程序。本书主页为 http://helloflask 章:模板 第 4 章:静态文件 第 5 章:数据库 第 6 章:模板优化 第 7 章:表单 第 8 章:用户认证 第 9 章:测试 第 10 章:组织你的代码 第 11 章:部署上线 小挑战 后记 版权信息 书名:Flask 入门教程 副书名:使用 Python 和 Flask 开发你的第一个 Web 程序 作者:李辉 简介 3 版本:1.0 发布时间:2019.2.1 的程 序。虽然本书即将接近尾声,但你的学习之路才刚刚开始,因为本书只是介绍了 Flask 入门所需的基础知识,你还需要进一步学习。在后记中,你可以看到进一步 学习的推荐读物。 接下来,有一个挑战在等着你。 进阶提示 第 11 章:部署上线 123 因为 PythonAnywhere 支持在线管理文件、编辑代码、执行命令,你可以在学 习编程的过程中使用它来在线开发 Web 程序。0 码力 | 127 页 | 7.62 MB | 1 年前3
Django、Vue 和Element UI 前后端原理论述GPT 时代,你还不知道怎么自动生 成用例? ◆作者:刘晓佳 Rachel 从 ChatGPT 问世的一刻,便引来了无数人的关注。各行各业似乎都受到了不少冲击。 尤其队员程序员来说,有了不小的挑战——毕竟,谁能赢过拥有巨大容量知识库的智脑 呢?!解放生产力?失业?从此成了绕不开的话题。 程序员尚且如此,对于测试人员来说,GPT 也成了一道门槛和一道台阶。但是,除 了恐惧,我们可以利用 GPT 尽量减少这部分耗费,将更多的时间精力专注于业务逻辑等方面更好地去提升测试质 量?本文基于此进行了探索,提出了一种长链路业务测试数据快速构造方法,并将该方 法应用于信贷领域多个场景,取得了良好成效。 二、背景与挑战 当前信贷领域长链路业务测试主要有三方面特点:一是业务链路长,随着信贷业务 不断迭代,业务场景一般涉及多个业务模块,整体业务流程长;二是信贷业务复杂度高, 业务形态的不同会有不同的触发方式,业0 码力 | 61 页 | 6.84 MB | 1 年前3
3 基于Azure的Python机器学习 王大伟Azure网站:https://azure.microsoft.com/zh-cn/ Azure行业解决方案 Azure 解决方案提供相关产品、服务和第三方应用程序,满足各种需求,帮助成功应对商业挑战。 如何用Azure完成机器学习 Azure机器学习 进入Azure服务页面 :https://portal.azure.com/#home Azure机器学习 通过点击“所有服务”,我们可以看到Azure可提供的服务非常多0 码力 | 31 页 | 3.69 MB | 1 年前3
Hello 算法 1.0.0b4 Python版不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通 读教材书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了 大部分精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,虽然不一定正确, 但至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体0 码力 | 329 页 | 27.34 MB | 1 年前3
Hello 算法 1.1.0 Python版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 点和用法,学习不同算法的原理、流程、用途和效 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,先积累至少 100 道题目,熟悉主流的算法问题。初次刷题 时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按照“艾宾浩斯遗忘曲线”来 复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.0.0b5 Python版学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在挫折中步步退缩。通读教材 书籍也是一种常见做法,但对于面向求职的同学来说,毕业季、投递简历、准备笔试面试已经占据了大部分 精力,厚重的书籍往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书找到了你。本书是我对此问题的给出的答案,即使不是最优解, 也至少是一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知 率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体0 码力 | 361 页 | 30.64 MB | 1 年前3
Hello 算法 1.0.0 Python版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,如“剑指 Offer”和“LeetCode Hot 100”,先积累至少 100 道题目,熟悉主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。 我们可以按照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富0 码力 | 362 页 | 17.54 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Python 版强的人能够顺利将地雷逐个排掉,而基础不足的人很可能被炸得满头是包,并在挫折中步步退缩。通读教材 也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 点和用法,学习不同算法的原理、流程、用途和效 率等方面的内容。 2. 阶段二:刷算法题。建议从热门题目开刷,先积累至少 100 道题目,熟悉主流的算法问题。初次刷题 时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按照“艾宾浩斯遗忘曲线”来 复习题目,通常在进行 3~5 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知0 码力 | 364 页 | 18.43 MB | 10 月前3
Hello 算法 1.0.0b1 Python版的同学能够顺利地将地雷逐个排掉,而基础不足的同学很可能被炸的满头是包,并在受挫中步步退缩。通读教 材书籍也是常用方法,但对于面向求职的同学来说,毕业季、投递简历、应付笔面试已经占用大部分精力,厚 重的书本也因此成为巨大的挑战。 如果你也有上述烦恼,那么很幸运这本书找到了你。本书是我对于该问题给出的答案,虽然不一定正确,但至 少代表一次积极的尝试。这本书虽然不足以让你直接拿到 Offer ,但会引导你探索数据结构与算法的“知识地0 码力 | 178 页 | 14.67 MB | 1 年前3
共 31 条
- 1
- 2
- 3
- 4













