积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(155)Python(155)PyWebIO(48)Django(2)Flask(1)

语言

全部中文(简体)(101)英语(48)

格式

全部PDF文档 PDF(104)其他文档 其他(50)DOC文档 DOC(1)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 155 个.
  • 全部
  • 后端开发
  • Python
  • PyWebIO
  • Django
  • Flask
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆
    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • pdf文档 FT 03 KC 基于Python Odoo信息化平台框架

    Python-Odoo 信息化平台框架 KC (YIUKEI CHOI) 目录 CONTENTS Odoo的发展及应用 基于Python-Odoo技术优势 基于Python-Odoo应用优势 Odoo平台信息化建设案例 Odoo的发展及应用 Odoo的发展 “Our mission is to help companies grow. We want to unleash companies’ 共享互通-多币种 多币种,同步最新汇率 个性化开发平台-Odoo Studio  图形化可视操作  简单的鼠标拖拽即可实现 功能的开发和定义  不受产品升级的影响,自 动 升级到新版本 物联网接入 智能机床 智能仪表 视频监控 蓝牙设备 POS 机器人 Odoo 国内外平台接口-第三方应用 Odoo全球应用 Odoo平台信息化建设案例 Odoo官方-法国Toyota案例 Odoo官方-法国Toyota案例 欧度科技-消防总队管理数字化平台 THANK YOU kc@wisdoo.com.cn 13128810412
    0 码力 | 21 页 | 1.96 MB | 1 年前
    3
  • pdf文档 09 Python C拓展在各平台的打包与发布 赵丰

    Python C拓展在各平台的打包 与发布 赵丰 GitHub ID: zhaofeng-shu33 在 Windows 平台上:没有找到编译器; 在 Unix 平台上: 无法解决软件依赖。 假如 numpy 官方的源只包含一堆 .c 文件 现在你要 pip install numpy 结果将是 1 为什么需要C拓展包 2 如何在不同的平台打包并发布 编写 setup.py 处理不同平台的差异 3 C拓展打包的注意事项 • 在 Linux 系统上打包无法上传到 pypi.org,只能用官方提供的 CentOS 6.10 Docker 打包 • C拓展包如果依赖额外的动态库需要一起打包进去并且在包导入的时候动 态添加PATH • 每一个Python版本打包的C拓展包相互独立,py37不能安装py36打包的 二进制包 • 在Windows平台上需要预装
    0 码力 | 6 页 | 414.79 KB | 1 年前
    3
  • pdf文档 3 Thautwarm 解放python的表达力 性能和安全性 语法和语义扩展 JIT 静态检查

    解放Python的 表达力,性能和安全性 Thautwarm 目录 CONTENTS 语法和语义扩展 JIT 静态类型 语法和语义扩展 表达力的扩展, 可用性的保留,白来的午餐? 演示一小部分: 模式匹配, Quick Lambda, Pipe运算 语言决定思维模型 GNU-APL C++ Haskell 说 到 质 数 � 人 们 想 到 什 么 � 语言决定思维模型 可以自定义扩展并 注册 5. 在这套系统下,有 很多简单的自定义 扩展可供练手 任何在不使用该系统时拥有的功能(PYC二进制文件 发布,C扩展等等),在使用该系统后得以保持,拥有 工业级的可靠性和稳定性 6 如何工作? Python Import 忽略Cache Loader, 只对源代码Loader 重写get_data方法 调用父get_data方法, 拿到源代码 moshmosh 检查类型的pattern (a, *b, c): 匹配tuple [a, *b, c]: 匹配列表 演示 Pattern-Matching 基于template-python扩展实现。 性能比Pampy高数量级倍。 简单直接的自定义pattern,真实的tree pattern matching。 Match的每个分支是语句而不是表达力有限的表达式。 … benchmark.py
    0 码力 | 43 页 | 10.71 MB | 1 年前
    3
  • pdf文档 1_丁来强_开源AIOps数据中台搭建与Python的作用

    CONTENTS 关于AIOps ⼯工程难点 开源⽅方案与Python作⽤用 1 关于AIOps 根据Gartner的报告,AIOps将在未来5-10年年落地开花,并集中统⼀一 各种Ops平台 IT运维的⽬目标/KPI 1 2 3 IT运维的挑战 • 复杂度越来越⾼高: • 架构演变:SaaS、多云、容器器、微服务等 • 数据孤岛越来越多:⼤大数据的3V(容量量、变化、种类) ⼤大数据 机器器学习 分析 Garner:AIOps对IT运维的改进 ⼤大数据促进平台融合 • 采集各种数据(以下各种⻆角⾊色都关⼼心): • IT运维⼈人员、开发⼈人员、数据⼯工程师、 • 安全运维、合规审计⼈人员、商务分析师 • Garner预测未来5年年: • AIOps会从功能演变成平台并落地 • 到2022年年,40%企业会使⽤用AIOps 机器器学习促进ITOps的主要⽅方式 3 开源⽅方案选择与Python作⽤用 特定场景下特定的平台搭建选择及策略略以及Python的作⽤用 • ⽇日志类数据⽅方案 • 指标类时序数据⽅方案 • 其他OLAP选择 • AI增强⽅方案 数据源与监控 - 容器器化架构为例例 物理理主机/VM层监控 容器器POD指标监控 容器器CaaS层资源监控 应⽤用层性能监控 应⽤用层 ⽇日志 指标监控 prometheus
    0 码力 | 48 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Python的智能问答之路 张晓庆

    迭代 Ø 策略? • 服务化 Ø 服务框架 Ø 性能 Ø 稳定性 各个击破-业务 u 想给小孩报名英文课,不清楚课程内 容和价格怎么办? u 课程看着不错,能直接帮忙预约一次 体验课? u 想给爸妈买点红酒,该怎么挑?怎么 给爸妈讲解红酒的喝法?红酒要怎么 保存? p 营销场景机器人 p 特性: ü 商务团队好帮手,多平台多渠道获客 ü 回答标准且及时,第一时间有效引导 ü 有效减少人力投入,提升线索收集数量 u 30块的流量包是多少G? u 办理海淀区高新技术企业需要准备哪 些材料? p 客服场景机器人 p 特性: ü 永远积极向上,比传统客服更”善解人意” ü 回答标准且及时,永不打烊 ü 支持多平台,支持语音、文字、图片等多种形式 ü 有效减少人力投入,有效提升应答准确率 各个击破-业务 u 公司需要打卡吗?公司的文化是什么? 年假多少天? u 打车发票要怎么报销? u 物业一年物业费多少钱?能帮忙换水 而言较适用业务程序开发 Ø GO:语法简单,支持面向对象、函数、接口编 程,开发速度媲美Python • 平台迁移性 Ø C++:受环境和编译器影响较大 Ø Python:安装简单,服务器ubuntu、centos等都 默认兼容 Ø Java:跨平台可用 Ø GO:支持交叉编译,可在不同平台直接运行 • 运行速度 Ø C++:最快 Ø Python:最慢,但是可以通过外调 C/C++/Java分担慢速计算的压力
    0 码力 | 28 页 | 2.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    具有可行性,可在有限步骤、有限时间、有限内存空间下完成。 ‧ 独立于编程语言,即可用多种语言实现。 1.2.2. 数据结构定义 「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 展开完整测试非 ‧“增长趋势”表示复杂度分析不关心算法具体使用了多少时间或占用了多少空间,而是给出一种“趋势性 分析”; 复杂度分析克服了实际测试方法的弊端。一是独立于测试环境,分析结果适用于所有运行平台。二是可以体现 不同数据量下的算法效率,尤其是可以反映大数据量下的算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Python版

    具有可行性,可在有限步骤、有限时间、有限内存空间下完成。 ‧ 独立于编程语言,即可用多种语言实现。 1.2.2. 数据结构定义 「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 展开完整测试非 ‧“增长趋势”表示复杂度分析不关心算法具体使用了多少时间或占用了多少空间,而是给出一种“趋势性 分析”; 复杂度分析克服了实际测试方法的弊端。一是独立于测试环境,分析结果适用于所有运行平台。二是可以体现 不同数据量下的算法效率,尤其是可以反映大数据量下的算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们
    0 码力 | 186 页 | 15.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方 间 增长的“快慢”。 复杂度分析克服了实际测试方法的弊端,体现在以下两个方面。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 第 2 章 复杂度分析 hello‑algo.com 19 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 Tip 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“ 维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 迭代 递归 实现方 式 循环结构 函数调用自身 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 时间效
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方 间 增长的“快慢”。 复杂度分析克服了实际测试方法的弊端,体现在以下两个方面。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 第 2 章 复杂度分析 hello‑algo.com 19 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 � 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺 维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 迭代 递归 实现方 式 循环结构 函数调用自身 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 时间效
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
共 155 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 16
前往
页
相关搜索词
Python机器学习性能优化FT03KC基于Odoo信息信息化平台框架09拓展打包发布赵丰Thautwarm解放python表达表达力安全安全性语法语义扩展JIT静态检查丁来开源AIOps数据中台搭建作用智能问答张晓庆Hello算法1.00b10b21.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩