积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(10)Python(10)

语言

全部中文(简体)(10)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.052 秒,为您找到相关结果约 10 个.
  • 全部
  • 后端开发
  • Python
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 07 FPGA 助力Python加速计算 陈志勇

    工业市场:工业伺服、控制器、安防相机、机器视觉、超声设备等。 Ø 消费类和广播设备:电视台演播设备、电视墙 Ø 测量测试仪器:示波器、信号发生器、逻辑分析仪等 FPGA 介绍 5 串行计算和并行计算 1 GHz 126 clock cycles = 8 MSPS / MAC unit 传统的基于 DSP 计算 - Serial 基于 FPGA 计算 - Parallelism 不仅是嵌入式系统 软件仿真和硬件仿真 7 Ø 近期很热门的话题 Ø 目的:提高算法计算效率,缩短算法开发时间和验证时间 Ø 加速框架: Ø 分布式计算:多节点计算 Ø 并行计算:多处理器、多线程计算 Ø 分布式计算引擎:Spark Ø 并行计算语言(函数式编程):Scala Ø 加速方法: Ø 算法的优化 Ø 算法的并行化 Ø CPU: 多核 CPU Ø GPU: 多核处理器 Ø 硬件仿真:算法计算在FPGA里实现,输入和输出在
    0 码力 | 34 页 | 6.89 MB | 1 年前
    3
  • pdf文档 2_FPGA助力Python加速计算_陈志勇

    工业市场:工业伺服、控制器、安防相机、机器视觉、超声设备等。 Ø 消费类和广播设备:电视台演播设备、电视墙 Ø 测量测试仪器:示波器、信号发生器、逻辑分析仪等 FPGA 介绍 5 串行计算和并行计算 1 GHz 126 clock cycles = 8 MSPS / MAC unit 传统的基于 DSP 计算 - Serial 基于 FPGA 计算 - Parallelism 不仅是嵌入式系统 软件仿真和硬件仿真 7 Ø 近期很热门的话题 Ø 目的:提高算法计算效率,缩短算法开发时间和验证时间 Ø 加速框架: Ø 分布式计算:多节点计算 Ø 并行计算:多处理器、多线程计算 Ø 分布式计算引擎:Spark Ø 并行计算语言(函数式编程):Scala Ø 加速方法: Ø 算法的优化 Ø 算法的并行化 Ø CPU: 多核 CPU Ø GPU: 多核处理器 Ø 硬件仿真:算法计算在FPGA里实现,输入和输出在
    0 码力 | 33 页 | 8.99 MB | 1 年前
    3
  • pdf文档 FPGA助力Python加速计算 陈志勇

    工业市场:工业伺服、控制器、安防相机、机器视觉、超声设备等。 ➢ 消费类和广播设备:电视台演播设备、电视墙 ➢ 测量测试仪器:示波器、信号发生器、逻辑分析仪等 FPGA 介绍 5 串行计算和并行计算 1 GHz 126 clock cycles = 8 MSPS / MAC unit 传统的基于 DSP 计算 - Serial 基于 FPGA 计算 - Parallelism 不仅是嵌入式系统 软件仿真和硬件仿真 7 ➢ 近期很热门的话题 ➢ 目的:提高算法计算效率,缩短算法开发时间和验证时间 ➢ 加速框架: ➢ 分布式计算:多节点计算 ➢ 并行计算:多处理器、多线程计算 ➢ 分布式计算引擎:Spark ➢ 并行计算语言(函数式编程):Scala ➢ 加速方法: ➢ 算法的优化 ➢ 算法的并行化 ➢ CPU: 多核 CPU ➢ GPU: 多核处理器 ➢ 硬件仿真:算法计算在FPGA里实现,输入和输出在
    0 码力 | 34 页 | 4.19 MB | 1 年前
    3
  • pdf文档 4 Python语法扩展框架Moshmosh和其上的CPython compatible JIT实现 thautwarm

    Python JIT thautwarm The “Restrain” 目录 CONTENTS Preview 和其他JIT的比较 实现原理 如何参与开发 1 Preview 并行计算: SIMD并行, true threading 避开解释器开销: for-loop 避免嵌套函数开销: native function pointer, inline “All Add 2”
    0 码力 | 30 页 | 8.04 MB | 1 年前
    3
  • pdf文档 8 4 Deep Learning with Python 费良宏

    语音– 音频、频段、波长、调制等等 ... 深度学习的优势 特性自动推导和预期结果的优化调整 可变的自动学习的健壮性 重用性-相同的神经网络的方法可用于许多应用和数据 类型 通过利用GPU的大规模并行计算-可扩展的大容量数据 深度学习的开发框架 Torch (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal
    0 码力 | 49 页 | 9.06 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Python版

    那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 操作数量优化 以「冒泡排序」为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们把数组从中点分为两个子数 组,则划分需要 ?(?) 时间,排序每个子数组需要 ?(( log ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与「桶排序」非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在桶排序中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到各个计算单元,完 成后再进行结果合并。 Figure 12‑3. 桶排序的并行计算 12.1.3. 分治常见应用 一方面,分治可以用来解决许多经典算法问题: ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后再找出跨越两 部分的最近点对。
    0 码力 | 329 页 | 27.34 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到 各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Python版

    那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点分为两个子数组,则划分需要 ?( ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到 各个计算单元,完成后再进行结果合并。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后再找出跨越两 部分的最近点对。
    0 码力 | 361 页 | 30.64 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到 各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Python 版

    那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧
    0 码力 | 364 页 | 18.43 MB | 10 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
07FPGA助力Python加速计算陈志勇语法扩展框架MoshmoshCPythoncompatibleJIT实现thautwarmDeepLearningwith费良宏Hello算法1.00b41.10b51.2简体中文简体中文
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩