PyConChina2022-深圳-大规模生产环境下的Faster CPython-王文洋大规模生产环境下的 Faster-CPython 主讲人: 王文洋 老板思维 已知:公司有xx个计算集群 每个集群有xxxxx个core Python进程占比xx% 如果:提升 10% 那么:可以节省 xx * xxxxx * xx% * 10%个core 降本 xx * xxxxx * xx% * 10% * n >> 我的工资 结论:。。。 Why0 码力 | 31 页 | 2.47 MB | 1 年前3
1 Python在Azure Notebook产品发展中的核心地位 以及通过Visual Studio Code的最佳Azure实践 韩骏Customers • 延迟 • 数据隐私 • 成本 • 大规模部署 • 离线运行 • 支持不同的设备 • Linux, Windows • AMD64, ARM32v7, ARM64 Azure IoT Edge + AI 把 AI 运算下放到边缘计算节点。 如何运作? 问题迎刃而解 • 延迟 • 数据隐私 • 成本 • 大规模部署 • 离线运行 • 支持不同的设备 • Linux,0 码力 | 55 页 | 14.99 MB | 1 年前3
PyConChina2022-杭州-ARM芯片的Python+AI算力优化-朱宏林• Intel AMX, Advanced Matrix Extension • ARM SME, Scalable Matrix Extension • CPU 存在优势场景,但当前尚没有可大规模使用 AMX 和 SME 实例 V0 V1 ✕ ✕ ✕ ✕ V2 BF16 数据类型 • BF16(Brain Floating Point,bfloat16) • Google Brain0 码力 | 24 页 | 4.00 MB | 1 年前3
8 4 Deep Learning with Python 费良宏 字符、词、从句、句子等等 语音– 音频、频段、波长、调制等等 ... 深度学习的优势 特性自动推导和预期结果的优化调整 可变的自动学习的健壮性 重用性-相同的神经网络的方法可用于许多应用和数据 类型 通过利用GPU的大规模并行计算-可扩展的大容量数据 深度学习的开发框架 Torch (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal0 码力 | 49 页 | 9.06 MB | 1 年前3
9 盛泳潘 When Knowledge Graph meet Python 鸵鸟不会飞 本页PPT借鉴于复旦大学肖仰华老师《大数据时代的知识工程与知识管理》 大数据时代催生KE飞速前进发 展 Preliminaries Preliminaries 大数据时代的机遇 – 大规模知识自动获取 本页PPT借鉴于复旦大学肖仰华老师《大数据时代的知识工程与知识管理》 Big Data + Machine Learning[R1] + Powerful Computation[R2]0 码力 | 57 页 | 1.98 MB | 1 年前3
Hello 算法 1.0.0b4 Python版优势与局限性 回溯算法本质上是一种深度优先搜索算法,它尝试所有可能的解决方案直到找到满足条件的解。这种方法的 优势在于它能够找到所有可能的解决方案,而且在合理的剪枝操作下,具有很高的效率。 然而,在处理大规模或者复杂问题时,回溯算法的运行效率可能难以接受。 ‧ 时间:回溯算法通常需要遍历状态空间的所有可能,时间复杂度可以达到指数阶或阶乘阶。 ‧ 空间:在递归调用中需要保存当前的状态(例如路径、用于剪枝的辅助变量等),当深度很大时,空间0 码力 | 329 页 | 27.34 MB | 1 年前3
Hello 算法 1.1.0 Python版优点与局限性 回溯算法本质上是一种深度优先搜索算法,它尝试所有可能的解决方案直到找到满足条件的解。这种方法的 优点在于能够找到所有可能的解决方案,而且在合理的剪枝操作下,具有很高的效率。 然而,在处理大规模或者复杂问题时,回溯算法的运行效率可能难以接受。 ‧ 时间:回溯算法通常需要遍历状态空间的所有可能,时间复杂度可以达到指数阶或阶乘阶。 ‧ 空间:在递归调用中需要保存当前的状态(例如路径、用于剪枝的辅助变量等),当深度很大时,空间0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.0.0b5 Python版优势与局限性 回溯算法本质上是一种深度优先搜索算法,它尝试所有可能的解决方案直到找到满足条件的解。这种方法的 优势在于它能够找到所有可能的解决方案,而且在合理的剪枝操作下,具有很高的效率。 然而,在处理大规模或者复杂问题时,回溯算法的运行效率可能难以接受。 ‧ 时间:回溯算法通常需要遍历状态空间的所有可能,时间复杂度可以达到指数阶或阶乘阶。 ‧ 空间:在递归调用中需要保存当前的状态(例如路径、用于剪枝的辅助变量等),当深度很大时,空间0 码力 | 361 页 | 30.64 MB | 1 年前3
Hello 算法 1.0.0 Python版优点与局限性 回溯算法本质上是一种深度优先搜索算法,它尝试所有可能的解决方案直到找到满足条件的解。这种方法的 优点在于能够找到所有可能的解决方案,而且在合理的剪枝操作下,具有很高的效率。 然而,在处理大规模或者复杂问题时,回溯算法的运行效率可能难以接受。 ‧ 时间:回溯算法通常需要遍历状态空间的所有可能,时间复杂度可以达到指数阶或阶乘阶。 ‧ 空间:在递归调用中需要保存当前的状态(例如路径、用于剪枝的辅助变量等),当深度很大时,空间0 码力 | 362 页 | 17.54 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Python 版优点与局限性 回溯算法本质上是一种深度优先搜索算法,它尝试所有可能的解决方案直到找到满足条件的解。这种方法的 优点在于能够找到所有可能的解决方案,而且在合理的剪枝操作下,具有很高的效率。 然而,在处理大规模或者复杂问题时,回溯算法的运行效率可能难以接受。 ‧ 时间:回溯算法通常需要遍历状态空间的所有可能,时间复杂度可以达到指数阶或阶乘阶。 ‧ 空间:在递归调用中需要保存当前的状态(例如路径、用于剪枝的辅助变量等),当深度很大时,空间0 码力 | 364 页 | 18.43 MB | 10 月前3
共 31 条
- 1
- 2
- 3
- 4













