 Nacos架构&原理
个配置准时的推送到不同的节点。即便如 此简单需求,随着业务规模变大也会变的非常复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 2008 年的阿里五彩石项目,自主研发完全可控,经历十多年双 11 洪峰考验,沉淀了高性能、 高可用、可扩展的核心能力,2018 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 架构 Nacos 2.X Nacos 2.x 相比上面 30s ⼀次的长轮训,升级成长链接模式,配置变更,启动建立长链接,配置变 更服务端推送变更配置列表,然后 SDK 拉取配置更新,因此通信效率大幅提升。  Nacos 架构 < 100 Nacos ⾼可⽤设计 Nacos ⾼可⽤设计 Nacos 历经 10 多年双十⼀考验,经历过多次断网,节点全挂,存储不可用各种故障,因此充分面0 码力 | 326 页 | 12.83 MB | 9 月前3 Nacos架构&原理
个配置准时的推送到不同的节点。即便如 此简单需求,随着业务规模变大也会变的非常复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 2008 年的阿里五彩石项目,自主研发完全可控,经历十多年双 11 洪峰考验,沉淀了高性能、 高可用、可扩展的核心能力,2018 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 架构 Nacos 2.X Nacos 2.x 相比上面 30s ⼀次的长轮训,升级成长链接模式,配置变更,启动建立长链接,配置变 更服务端推送变更配置列表,然后 SDK 拉取配置更新,因此通信效率大幅提升。  Nacos 架构 < 100 Nacos ⾼可⽤设计 Nacos ⾼可⽤设计 Nacos 历经 10 多年双十⼀考验,经历过多次断网,节点全挂,存储不可用各种故障,因此充分面0 码力 | 326 页 | 12.83 MB | 9 月前3
 Hello 算法 1.1.0 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。感谢每一位投入时间与精力的撰稿人,他们是(按照 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明0 码力 | 378 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。感谢每一位投入时间与精力的撰稿人,他们是(按照 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明0 码力 | 378 页 | 18.47 MB | 1 年前3
 Hello 算法 1.0.0 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。感谢每一位投入时间与精力的撰稿人,他们是(按照 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明0 码力 | 376 页 | 17.59 MB | 1 年前3 Hello 算法 1.0.0 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。感谢每一位投入时间与精力的撰稿人,他们是(按照 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明0 码力 | 376 页 | 17.59 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 Java 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 www.hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法为数据结构注入生命力。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Java 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 复杂度分析 17 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤 和示例问题等。 第 0 章 前言 www.hello‑algo.com 3 图 0‑1 本书主要内容 0.1.3 致谢 本书在开源社区众多贡献者的共同努力下不断完善。 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。 ‧ 算法为数据结构注入生命力。数据结构本身仅存储数据信息,结合算法才能解决特定问题。 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.0.0b5 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第 2 章 复杂度分析 16 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 迭代与递归 . . . 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 示例题目等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 Hello 算法内容结构 0.1.3 致谢 在本书的创作过程中,我得到了许多人的帮助,包括但不限于: 0‑6 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按0 码力 | 376 页 | 30.69 MB | 1 年前3 Hello 算法 1.0.0b5 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第 2 章 复杂度分析 16 2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 迭代与递归 . . . 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 示例题目等。 第 0 章 前言 hello‑algo.com 3 图 0‑1 Hello 算法内容结构 0.1.3 致谢 在本书的创作过程中,我得到了许多人的帮助,包括但不限于: 0‑6 评论区示例 0.2.5 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段。 1. 算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按0 码力 | 376 页 | 30.69 MB | 1 年前3
 Hello 算法 1.0.0b1 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度分析 12 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. 时间复杂度 . . . 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法、搜索与回溯、动态规划、分治算法,内容包括定义、使用场景、优劣势、时 空效率、实现方法、示例题目等。 建议通读本节内容,以获取最佳阅读体验。 0.2.1. 算法学习路线 总体上看,我认为可将学习数据结构与算法的过程分为三个阶段。 1. 算法入门。熟悉各种数据结构的特点、用法,学习各种算法的原理、流程、用途、效率等。 2. 刷算法题。可以先从热门题单开刷,推荐剑指 Offer、LeetCode Hot 100,先积累至少 100 道题量,熟 悉大多数的算法问题。刚开始刷题时,“遗忘”是最大的困扰点,但这是很正常的,请不要担心。学习中0 码力 | 186 页 | 14.71 MB | 1 年前3 Hello 算法 1.0.0b1 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度分析 12 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. 时间复杂度 . . . 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法、搜索与回溯、动态规划、分治算法,内容包括定义、使用场景、优劣势、时 空效率、实现方法、示例题目等。 建议通读本节内容,以获取最佳阅读体验。 0.2.1. 算法学习路线 总体上看,我认为可将学习数据结构与算法的过程分为三个阶段。 1. 算法入门。熟悉各种数据结构的特点、用法,学习各种算法的原理、流程、用途、效率等。 2. 刷算法题。可以先从热门题单开刷,推荐剑指 Offer、LeetCode Hot 100,先积累至少 100 道题量,熟 悉大多数的算法问题。刚开始刷题时,“遗忘”是最大的困扰点,但这是很正常的,请不要担心。学习中0 码力 | 186 页 | 14.71 MB | 1 年前3
 Hello 算法 1.0.0b4 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度 13 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. 时间复杂度 . . . . 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 法、常见类型、示例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 示例题目等。 0 评论区示例 0.2.5. 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段: 1. 算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按0 码力 | 342 页 | 27.39 MB | 1 年前3 Hello 算法 1.0.0b4 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度 13 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. 时间复杂度 . . . . 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 法、常见类型、示例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:搜索、排序、分治、回溯、动态规划、贪心等算法的定义、优缺点、效率、应用场景、解题步骤、 示例题目等。 0 评论区示例 0.2.5. 算法学习路线 从总体上看,我们可以将学习数据结构与算法的过程划分为三个阶段: 1. 算法入门。我们需要熟悉各种数据结构的特点和用法,学习不同算法的原理、流程、用途和效率等方面 内容。 2. 刷算法题。建议从热门题目开刷,如剑指 Offer和LeetCode Hot 100,先积累至少 100 道题目,熟悉 主流的算法问题。初次刷题时,“知识遗忘”可能是一个挑战,但请放心,这是很正常的。我们可以按0 码力 | 342 页 | 27.39 MB | 1 年前3
 Hello 算法 1.2.0 繁体中文 Java 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 複雜度分析 17 2.1 演算法效率評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代與遞迴 . . . . 陣列、鏈結串列、堆疊、佇列、雜湊表、樹、堆積、 圖等資料結構的定義、優缺點、常用操作、常見型別、典型應用、實現方法等。 ‧ 演算法:搜尋、排序、分治、回溯、動態規劃、貪婪等演算法的定義、優缺點、效率、應用場景、解題 步驟和示例問題等。 第 0 章 前言 www.hello‑algo.com 3 圖 0‑1 本書主要內容 0.1.3 致謝 本書在開源社群眾多貢獻者的共同努力下不斷完善。 0.2.5 演算法學習路線 從總體上看,我們可以將學習資料結構與演算法的過程劃分為三個階段。 1. 階段一:演算法入門。我們需要熟悉各種資料結構的特點和用法,學習不同演算法的原理、流程、用途 和效率等方面的內容。 2. 階段二:刷演算法題。建議從熱門題目開刷,先積累至少 100 道題目,熟悉主流的演算法問題。初次刷 題時,“知識遺忘”可能是一個挑戰,但請放心,這是很正常的。我們可以按照“艾賓浩斯遺忘曲線”來0 码力 | 379 页 | 18.79 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Java 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第 2 章 複雜度分析 17 2.1 演算法效率評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代與遞迴 . . . . 陣列、鏈結串列、堆疊、佇列、雜湊表、樹、堆積、 圖等資料結構的定義、優缺點、常用操作、常見型別、典型應用、實現方法等。 ‧ 演算法:搜尋、排序、分治、回溯、動態規劃、貪婪等演算法的定義、優缺點、效率、應用場景、解題 步驟和示例問題等。 第 0 章 前言 www.hello‑algo.com 3 圖 0‑1 本書主要內容 0.1.3 致謝 本書在開源社群眾多貢獻者的共同努力下不斷完善。 0.2.5 演算法學習路線 從總體上看,我們可以將學習資料結構與演算法的過程劃分為三個階段。 1. 階段一:演算法入門。我們需要熟悉各種資料結構的特點和用法,學習不同演算法的原理、流程、用途 和效率等方面的內容。 2. 階段二:刷演算法題。建議從熱門題目開刷,先積累至少 100 道題目,熟悉主流的演算法問題。初次刷 題時,“知識遺忘”可能是一個挑戰,但請放心,這是很正常的。我們可以按照“艾賓浩斯遺忘曲線”來0 码力 | 379 页 | 18.79 MB | 10 月前3
 Hello 算法 1.0.0b2 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度分析 12 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. 时间复杂度 . . . 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法、搜索与回溯、动态规划、分治算法,内容包括定义、使用场景、优劣势、时 空效率、实现方法、示例题目等。 建议通读本节内容,以获取最佳阅读体验。 0.2.1. 算法学习路线 总体上看,我认为可将学习数据结构与算法的过程分为三个阶段。 1. 算法入门。熟悉各种数据结构的特点、用法,学习各种算法的原理、流程、用途、效率等。 2. 刷算法题。可以先从热门题单开刷,推荐剑指 Offer、LeetCode Hot 100,先积累至少 100 道题量,熟 悉大多数的算法问题。刚开始刷题时,“遗忘”是最大的困扰点,但这是很正常的,请不要担心。学习中0 码力 | 197 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 复杂度分析 12 2.1. 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. 时间复杂度 . . . 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树、堆、图等数据结构,内容包括定义、优劣势、常用操作、常见类型、典型应用、实现方法等。 ‧ 算法:查找算法、排序算法、搜索与回溯、动态规划、分治算法,内容包括定义、使用场景、优劣势、时 空效率、实现方法、示例题目等。 建议通读本节内容,以获取最佳阅读体验。 0.2.1. 算法学习路线 总体上看,我认为可将学习数据结构与算法的过程分为三个阶段。 1. 算法入门。熟悉各种数据结构的特点、用法,学习各种算法的原理、流程、用途、效率等。 2. 刷算法题。可以先从热门题单开刷,推荐剑指 Offer、LeetCode Hot 100,先积累至少 100 道题量,熟 悉大多数的算法问题。刚开始刷题时,“遗忘”是最大的困扰点,但这是很正常的,请不要担心。学习中0 码力 | 197 页 | 15.72 MB | 1 年前3
 JAVA 应用与开发 - 集合与映射Vector � java.util.Vector ���� List ������的������的�� ��� O 与 ArrayList 的差别 Vector 是同步(线程安全)的,运行效率要低一些,主要用在在多 线程环境中,而 ArrayList 是不同步的,适合在单线程环境中使用。 �������� List �����的����: public Vector() public HashMap 的差别 Hashtable 中元素的“键”和“值”均不允许为 null,而 HashMap 则允许。 Hashtable 是同步的,即线程安全的,效率相对要低一些,适合 在多线程环境下使用;而 HashMap 是不同步的,效率相对高一 些,提倡在单线程环境中使用。 除此之外,Hashtable 与 HashMap 的用法格式完全相同。 24 28 ���� API Enumeration0 码力 | 66 页 | 713.79 KB | 1 年前3 JAVA 应用与开发 - 集合与映射Vector � java.util.Vector ���� List ������的������的�� ��� O 与 ArrayList 的差别 Vector 是同步(线程安全)的,运行效率要低一些,主要用在在多 线程环境中,而 ArrayList 是不同步的,适合在单线程环境中使用。 �������� List �����的����: public Vector() public HashMap 的差别 Hashtable 中元素的“键”和“值”均不允许为 null,而 HashMap 则允许。 Hashtable 是同步的,即线程安全的,效率相对要低一些,适合 在多线程环境下使用;而 HashMap 是不同步的,效率相对高一 些,提倡在单线程环境中使用。 除此之外,Hashtable 与 HashMap 的用法格式完全相同。 24 28 ���� API Enumeration0 码力 | 66 页 | 713.79 KB | 1 年前3
共 19 条
- 1
- 2













