Java 源码剖析——彻底搞懂Reference 和ReferenceQueue链滴 Java 源码剖析——彻底搞懂 Reference 和 ReferenceQueue 作者:jesministrator 原文链接:https://ld246.com/article/1513083921948 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 之前博主的一篇读书笔记——《深入理解Java虚拟机》系列之回收对象算法与四种引用类型博客中为 NULL * pending: this * Enqueued: next reference in queue (or this if last) 原文链接:Java 源码剖析——彻底搞懂 Reference 和 ReferenceQueue * Inactive: this */ @SuppressWarnings("rawtypes") Reference ic字段pending其实就是 个链表。 private static class ReferenceHandler extends Thread { ...... 原文链接:Java 源码剖析——彻底搞懂 Reference 和 ReferenceQueue public void run() { while (true) { tryHandlePending(true);0 码力 | 6 页 | 283.24 KB | 1 年前3
《Java 应用与开发》课程讲义 - 王晓东. . . . 74 7.2.5 接口特性总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.3 抽象类和接口剖析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.3.1 语法层面的区别 . . . . . . . . 10.3.1 ArrayList 类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.3.2 代码的局部性能优化 ensureCapacity . . . . . . . . . . . . . . . . . . 116 10.3.3 Vector 类 . . . . . . . . . . . . JavaSE6.0 支持XML,采用新的虚拟机Hotspot 引入Assert语言特性 增加范型、for-each循环、可变数目参数、注解、自动装箱和拆箱 将Java2重新做回Java,性能、易用性前所未有的提高 Java7 Oracle正式发布Java7,也是Sun被Oracle收购以来发行的第一个Java版本 Java 8 Lambda,�Stream�API, Optional�Class0 码力 | 330 页 | 6.54 MB | 1 年前3
Hello 算法 1.0.0b2 Java版具有可行性,可在有限步骤、有限时间、有限内存空间下完成。 ‧ 独立于编程语言,即可用多种语言实现。 1.2.2. 数据结构定义 「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计原则有: ‧ 空间占用尽可能小,节省计算机内存。 ‧ 数据操作尽量快,包括数据访问、添加、删除、更新等。 1. 引言 hello‑algo.com 10 ‧ 提供简洁的数据表示和逻辑信息,以便算法高效运行。 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 展开完整测试非 少空间,而是给出一种“趋势性 分析”; 复杂度分析克服了实际测试方法的弊端。一是独立于测试环境,分析结果适用于所有运行平台。二是可以体现 不同数据量下的算法效率,尤其是可以反映大数据量下的算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可0 码力 | 197 页 | 15.72 MB | 1 年前3
Nacos架构&原理
高可用设计 100 Nacos 鉴权插件 103 Nacos 账号权限体系 103 Nacos 认证机制 110 Nacos 前端设计 117 Nacos 前端设计 117 Nacos 性能报告 122 Nacos Naming 大规模测试报告 122 Nacos ⽣态 130 Nacos Spring 生态 130 Nacos Docker & Kubernetes 生态 137 os 作为核心引擎 孵化于 2008 年的阿里五彩石项目,自主研发完全可控,经历十多年双 11 洪峰考验,沉淀了高性能、 高可用、可扩展的核心能力,2018 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴在 10 多年分布式应用架构实践过程中,产出了⼀大批非常优秀的中间件技术产品,其中软 负载领域的 Diamond、Configserver、Vipserver,无论在架构先进性、功能丰富度以及性能方面均 有非常出色的积累,2018 年初中间件团队决定把这⼀领域的技术进行重新梳理并开源,这就是本书 介绍的主角 Nacos,经过三年时间的发展,Nacos 已经被大量开发者和企业客户用于生产环境,本0 码力 | 326 页 | 12.83 MB | 9 月前3
Hello 算法 1.0.0b4 Java版‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2. 数据结构定义 「数据结构 Data Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 1. 初识算法 hello‑algo.com 10 ‧ 提 们最直接的 方法就是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够 反映真实情况,但也存在较大局限性。 难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。例如,在某台计算机中,算法 A 的运行时 间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要在各种 机器上进行测试,而这是不现实的。 展开完整测 势,而非具体的运行时间或占用空间。 复杂度分析克服了实际测试方法的弊端。首先,它独立于测试环境,因此分析结果适用于所有运行平台。其 次,它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 如果你对复杂度分析的概念仍感到困惑,无需担心,我们会在后续章节详细介绍。 2.1.3. 复杂度分析重要性 复杂度分析为我们提供了一把评估算法效率的“标尺”,告诉我们执行某个算法所需的时间和空间资源,并使0 码力 | 342 页 | 27.39 MB | 1 年前3
Hello 算法 1.1.0 Java版的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方 在以下两个方面。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 第 2 章 复杂度分析 hello‑algo.com 19 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 Tip 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 实现方 式 循环结构 函数调用自身 时间效 率 效率通常较高,无函数调用开销0 码力 | 378 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 Java版的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方 在以下两个方面。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 第 2 章 复杂度分析 hello‑algo.com 19 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 � 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 实现方 式 循环结构 函数调用自身 时间效 率 效率通常较高,无函数调用开销0 码力 | 376 页 | 17.59 MB | 1 年前3
Hello 算法 1.0.0b5 Java版接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要 在各种机器上进行测试,统计平均效率,而这是不现实的。 在以下两个方面。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 第 2 章 复杂度分析 hello‑algo.com 18 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 � 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 间复杂度分为最差、最佳、平均时间复 杂度,最佳时间复杂度几乎不用,因为输入数据一般需要满足严格条件才能达到最佳情况。 ‧ 平均时间复杂度反映算法在随机数据输入下的运行效率,最接近实际应用中的算法性能。计算平均时 间复杂度需要统计输入数据分布以及综合后的数学期望。 空间复杂度 ‧ 空间复杂度的作用类似于时间复杂度,用于衡量算法占用空间随数据量增长的趋势。 ‧ 算法运行过程中的相关内存空间可0 码力 | 376 页 | 30.69 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Java 版题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 ‧ 但如果学过算法,我们就会知道内置排序函数的时间复杂度是 ?(? log ?) ;而如果给定的数据是固定 位数的整数(例如学号),那么我们就可以用效率更高的“基数排序”来做,将时间复杂度降为 的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 CPU 上运行,一个算法的内存操作密集,那么它在高性能内存上的表现就会更好。也 就是说,算法在不同的机器上的测试结果可能是不一致的。这意味着我们需要在各种机器上进行测试,统计 平均效率,而这是不现实的。 www.hello‑algo.com 19 ‧ 它无需实际运行代码,更加绿色节能。 ‧ 它独立于测试环境,分析结果适用于所有运行平台。 ‧ 它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。 Tip 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。0 码力 | 379 页 | 18.48 MB | 10 月前3
Apache Shiro 1.2.x Reference Manual 中文翻译Authorization 授权 1.2.如果 Realm 的方法是一个 hasRole* 或 isPermitted* ,并且返回真,则真值立即被返回 而且剩余的 Realm 被短路,这种做法作为一种性能增强,在一个 Realm 判断允许后,隐含认 为这个 Subject 被允许。它支持最安全的安全策略:默认情况下所有都被禁止,明确指定允许 的事情。 2.如果 Realm 没有实现 Authorizer subject.isPermitted),所有分配给该用户的权限(在他们的组,角色中,或直接分配给他 们)需要为蕴含逻辑进行单独的检查。Shiro 通过首次成功检查立即返回来“短路”该进程以提 高性能,但它不是一颗银弹。 这通常是极快的,当用户,角色和权限缓存在内存中且使用了一个合适的CacheManager 时,在Shiro 不支持的 Realm 实现中。只要知道使用此默认行为,当权限分配给用户或他们 Session Management Sessions 必须被验证,这样任何无效(过期或停止)的会话能够从会话数据存储中删除。这保 证了数据存储不会由于不能再次使用的会话而导致写入超时。 由于性能上的原因,仅仅在Sessions 被访问(也就是subject.getSession())时验证它们是否 停止或过期。这意味着, 如果没有额外的定期验证,Session orphans(孤儿)将会开始填充会0 码力 | 196 页 | 2.34 MB | 1 年前3
共 20 条
- 1
- 2













