积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(21)Java(21)

语言

全部中文(简体)(20)中文(繁体)(1)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.086 秒,为您找到相关结果约 21 个.
  • 全部
  • 后端开发
  • Java
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Nacos架构&原理

    此简单需求,随着业务规模变大也会变的非常复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 靠性,可观测性等分布式系统指标影 响整个分布式系统的运行。历史上,这个系统在阿里也触发过大故障,经历过数次血与火的考验。 在阿里数次架构升级中,Nacos 都做了大量的功能迭代,用来支持阿里的异地多活,容灾演练,容 器化,Serverless 化。Nacos 经过阿里内部锤炼十年以上,各项指标已经及其先进,稳定,为服务 好全球开发者,Nacos 经过数十名工程师持续努力,以开源形式和大家见面,相信 ⼀次配 置要将全部实例重启,不仅增加了系统的不稳定性,也提高了维护的成本。 那么如何能够做到服务不重启就可以修改配置?所有就产生了四个基础诉求:  需要支持动态修改配置  需要动态变更有多实时  变更快了之后如何管控控制变更风险,如灰度、回滚等  敏感配置如何做安全配置 Nacos 架构 < 22 概念介绍 配置(Configuration) 在系统开发过程中通常会将⼀
    0 码力 | 326 页 | 12.83 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Java 版

    作者:靳宇棟(@krahets) 程式碼審閱:靳宇棟(@krahets) Release 1.2.0 2024‑12‑06 序 兩年前,我在力扣上分享了“劍指 Offer”系列題解,受到了許多讀者的鼓勵與支持。在與讀者交流期間,我 最常被問到的一個問題是“如何入門演算法”。漸漸地,我對這個問題產生了濃厚的興趣。 兩眼一抹黑地刷題似乎是最受歡迎的方法,簡單、直接且有效。然而刷題就如同玩“踩地雷”遊戲,自學能 ”從這個意義上看,這本 書並非完全“免費”。為了不辜負你為本書所付出的寶貴“注意力”,我會竭盡所能,投入最大的“注意力” 來完成本書的創作。 本人自知學疏才淺,書中內容雖然已經過一段時間的打磨,但一定仍有許多錯誤,懇請各位老師與同學批評 指正。 本書中的程式碼附有可一鍵執行的原始檔,託管於 github.com/krahets/hello‑algo 倉庫。 動畫在 PDF 內的展示效果有限,可訪問 www 從巧奪天工的匠人 技藝、到解放生產力的工業產品、再到宇宙運行的科學規律,幾乎每一件平凡或令人驚嘆的事物背後,都隱 藏著精妙的演算法思想。 同樣,資料結構無處不在:大到社會網絡,小到地鐵路線,許多系統都可以建模為“圖”;大到一個國家,小 到一個家庭,社會的主要組織形式呈現出“樹”的特徵;冬天的衣服就像“堆疊”,最先穿上的最後才能脫下; 羽毛球筒則如同“佇列”,一端放入、一端取出;字典就像一個“雜湊表”,能夠快速查找目標詞條。
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0 Java版

    轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 logRecur(float n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } 对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是 仅次于常数阶的理想的时间复杂度。 � ?(log ?) 的底数是多少? 准确来说,“一分为 ?”对应的时间复杂度是 ?(log? ?) 。而通过对数换底公式,我们可以 ,元素之间是一对一的顺序关系。 ‧ 非线性数据结构:树、堆、图、哈希表。 非线性数据结构可以进一步划分为树形结构和网状结构。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 图 3‑1 线性数据结构与非线性数据结构 3.1.2 物理结构:连续与分散 当算法程序运行时,正在处理的数据主要存储在内存中。图 3‑2 展示了一个计算机内存条,其中每个黑色方
    0 码力 | 376 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } 对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是 仅次于常数阶的理想的时间复杂度。 ?(log ?) 的底数是多少? 准确来说,“一分为 ?”对应的时间复杂度是 ?(log? ?) 。而通过对数换底公式,我们可以得到具有 ,元素之间是一对一的顺序关系。 ‧ 非线性数据结构:树、堆、图、哈希表。 非线性数据结构可以进一步划分为树形结构和网状结构。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 图 3‑1 线性数据结构与非线性数据结构 3.1.2 物理结构:连续与分散 当算法程序运行时,正在处理的数据主要存储在内存中。图 3‑2 展示了一个计算机内存条,其中每个黑色方
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Java 版

    GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www.hello‑algo.com 9 logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } 对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是 仅次于常数阶的理想的时间复杂度。 ?(log ?) 的底数是多少? 准确来说,“一分为 ?”对应的时间复杂度是 ?(log? ?) 。而通过对数换底公式,我们可以得到具有 ,元素之间是一对一的顺序关系。 ‧ 非线性数据结构:树、堆、图、哈希表。 非线性数据结构可以进一步划分为树形结构和网状结构。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 图 3‑1 线性数据结构与非线性数据结构 3.1.2 物理结构:连续与分散 当算法程序运行时,正在处理的数据主要存储在内存中。图 3‑2 展示了一个计算机内存条,其中每个黑色方
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 JAVA 应用与开发 - 高级类特性

    多个更适用的子类时,为避免误用功能相对较弱的父类对象, 干脆限制其实例化。 �类�����部实现抽象�类�的抽象方法�����类� ����为抽象类� �类��抽象类����类�����抽象方法������ 类����为抽象类� 多����抽象类����������类�����方法的 �����为抽象类的类�� 抽象类����� static ���方法������������ �����方法���� < 类名 >.< 类成员 多个更适用的子类时,为避免误用功能相对较弱的父类对象, 干脆限制其实例化。 �类�����部实现抽象�类�的抽象方法�����类� ����为抽象类� �类��抽象类����类�����抽象方法������ 类����为抽象类� 多����抽象类����������类�����方法的 �����为抽象类的类�� 抽象类����� static ���方法������������ �����方法���� < 类名 >.< 类成员 多个更适用的子类时,为避免误用功能相对较弱的父类对象, 干脆限制其实例化。 �类�����部实现抽象�类�的抽象方法�����类� ����为抽象类� �类��抽象类����类�����抽象方法������ 类����为抽象类� 多����抽象类����������类�����方法的 �����为抽象类的类�� 抽象类����� static ���方法������������ �����方法���� < 类名 >.< 类成员
    0 码力 | 61 页 | 677.55 KB | 1 年前
    3
  • pdf文档 跟我学Shiro - 张开涛

    )、LockedAccountException(锁定的帐号)、 UnknownAccountException(错误的帐号)、ExcessiveAttemptsException(登录失败次数过 多)、IncorrectCredentialsException (错误的凭证)、ExpiredCredentialsException(过期的 凭证)等,具体请查看其继承关系;对于页面的错误消息展示,最好使用如“用户名/密码 中核心的身份认证入口点,此处可以自 定义插入自己的实现; 4、Authenticator 可能会委托给相应的 AuthenticationStrategy 进行多 Realm 身份验证,默认 ModularRealmAuthenticator 会调用 AuthenticationStrategy 进行多 Realm 身份验证; 5、Authenticator 会把相应的 token 传入 Realm,从 Realm 获取身份验证信息,如果没有返 shiro.chapter2.LoginLogoutTest 的 testCustomRealm 测试方法,只需要把之前的 shiro.ini 配置文件改成 shiro-realm.ini 即可。 多 Realm 配置 1、ini 配置文件(shiro-multi-realm.ini) securityManager 会按照 realms 指定的顺序进行身份认证。此处我们使用显示指定顺序的方
    0 码力 | 219 页 | 4.16 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 Java版

    靳宇栋(Krahets) Release 1.0.0b4 2023‑07‑26 序 两年前,我在力扣上分享了《剑指 Offer》系列题解,受到了许多朋友的喜爱与支持。在此期间,我回答了众 多读者的评论问题,其中最常见的一个问题是“如何入门学习算法”。我逐渐也对这个问题产生了浓厚的兴 趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单直接且有效。然而,刷题就如同玩“扫雷”游戏,自学能力 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 Figure 0‑7. 算法学习路线 0.3. 小结 对数阶 ?(log ?) 与指数阶相反,对数阶反映了“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长缓慢,是理想的时 间复杂度。 对数阶常出现于「二分查找」和「分治算法」中,体现了“一分为多”和“化繁为简”的算法思想。 设输入数据大小为 ? ,由于每轮缩减到一半,因此循环次数是 log2 ? ,即 2? 的反函数。 // === File: time_complexity.java ===
    0 码力 | 342 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Java版

    轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo.com 8 图 logRecur(float n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } 对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是 仅次于常数阶的理想的时间复杂度。 第 2 章 复杂度分析 hello‑algo.com 36 � ?(log ?) 的底数是多少? 准确来说,“一分为 非线性数据结构可以进一步被划分为树形结构和网状结构。 ‧ 线性结构:数组、链表、队列、栈、哈希表,元素之间是一对一的顺序关系。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 3.1.2 物理结构:连续与离散 在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用
    0 码力 | 376 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Java版

    轮以上后,往往就能牢记于心了。 3. 搭建知识体系。在学习方面,可以阅读算法专栏文章、解题框架、算法教材,不断地丰富知识体系。在 刷题方面,可以开始采用进阶刷题方案,例如按专题分类、一题多解、一解多题等,相关刷题心得可以 在各个社区中找到。 作为一本入门教程,本书内容主要对应“第一阶段”,致力于帮助你更高效地开展第二、三阶段的学习。 Figure 0‑2. 算法学习路线 0.2.2. 行文风格约定 对数阶与指数阶正好相反,后者反映“每轮增加到两倍的情况”,而前者反映“每轮缩减到一半的情况”。对数 阶仅次于常数阶,时间增长得很慢,是理想的时间复杂度。 对数阶常出现于「二分查找」和「分治算法」中,体现“一分为多”、“化繁为简”的算法思想。 设输入数据大小为 ? ,由于每轮缩减到一半,因此循环次数是 log2 ? ,即 2? 的反函数。 2. 复杂度分析 hello‑algo.com 23 // === 0; i < index; i++) { if (head == null) return null; head = head.next; } return head; } 链表的内存占用多。链表以结点为单位,每个结点除了保存值外,还需额外保存指针(引用)。这意味着同样 数据量下,链表比数组需要占用更多内存空间。 4.2.3. 链表常用操作 遍历链表查找。遍历链表,查找链表内值为 target
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Nacos架构原理Hello算法1.2繁体中文繁体中文Java1.01.1简体简体中文Advancedclassfeaturespdf跟我学Shiro张开0b40b50b2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩