积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)Java(20)

语言

全部中文(简体)(19)中文(繁体)(1)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.077 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • Java
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.2.0 繁体中文 Java 版

    內的展示效果有限,可訪問 www.hello‑algo.com 網頁版以獲得更佳的閱讀體驗。 推薦語 “一本通俗易懂的資料結構與演算法入門書,引導讀者手腦並用地學習,強烈推薦演算法初學者閱讀!” ——鄧俊輝,清華大學計算機系教授 “如果我當年學資料結構與演算法時有《Hello 演算法》,學起來應該會簡單 10 倍!” ——李沐,亞馬遜資深首席科學家 電腦的出現為世界帶來了巨大的變革,它憑藉高速的運算能力與卓越的可程式化特性,成為執行演算法 。從巧奪天工的匠人 技藝、到解放生產力的工業產品、再到宇宙運行的科學規律,幾乎每一件平凡或令人驚嘆的事物背後,都隱 藏著精妙的演算法思想。 同樣,資料結構無處不在:大到社會網絡,小到地鐵路線,許多系統都可以建模為“圖”;大到一個國家,小 到一個家庭,社會的主要組織形式呈現出“樹”的特徵;冬天的衣服就像“堆疊”,最先穿上的最後才能脫下; 羽毛球筒則如同“佇列”,一端放入、一端取出;字典就像一個“雜湊表”,能夠快速查找目標詞條。 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可能用大面額的貨幣),最終得到了可行的找零方 案。從資料結構與演算法的角度看,這種方法本質上是“貪婪”演算法。 小到烹飪一道菜,大到星際航行,幾乎所有問題的解決都離不開演算法。計算機的出現使得我們能夠透過程 式設計將資料結構儲存在記憶體中,同時編寫程式碼呼叫 CPU 和 GPU 執行演算法。這樣一來,我們就能把 生活中的問題
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、另一端取出;字典就像一个“哈希表”,能够快速查找目标词条。 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Java 版

    杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; 羽毛球筒则如同“队列”,一端放入、另一端取出;字典就像一个“哈希表”,能够快速查找目标词条。 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0 Java版

    1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 为「渐近复杂度分析 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space 而将 “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍
    0 码力 | 376 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Java版

    查字典这个小学生的标配技能,实际上就是大名鼎鼎的「二分查找」。从数据结构角度,我们可以将字典看作 是一个已排序的「数组」;而从算法角度,我们可将上述查字典的一系列指令看作是「二分查找」算法。 小到烹饪一道菜、大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现,使我们可以通过编程将 数据结构存储在内存中,也可以编写代码来调用 CPU, GPU 执行算法,从而将生活中的问题搬运到计算机中, 更加高效地解决各式各样的复杂问题。 的对应方法。 ‧ 算法是数据结构发挥的舞台。数据结构仅存储数据信息,结合算法才可解决特定问题。 ‧ 算法有对应最优的数据结构。给定算法,一般可基于不同的数据结构实现,而最终执行效率往往相差很 大。 Figure 1‑2. 数据结构与算法的关系 如果将「LEGO 乐高」类比到「数据结构与算法」,那么可以得到下表所示的对应关系。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ? 比较小时,算法 B 是要明显优于算 法 C 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Java版

    最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是「贪心算法」。 1. 初识算法 hello‑algo.com 9 Figure 1‑3. 货币找零过程 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将 数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转 移到计算机上,以更高效的方式解决各种复杂问题。 复杂度 hello‑algo.com 17 } } ?(?) 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号称为「大 ? 记号 Big‑? Notation」,表示函数 ?(?) 的「渐近上界 Asymptotic Upper Bound」。 推算时间复杂度本质上是计算“操作数量函数 ?(?)”的渐近上界。接下来,我们来看函数渐近上界的数学 (?) 给出了 ?(?) 的一个渐近上界,记为 ?(?) = ?(?(?)) Figure 2‑2. 函数的渐近上界 从本质上讲,计算渐近上界就是寻找一个函数 ?(?) ,使得当 ? 趋向于无穷大时,?(?) 和 ?(?) 处于相同 的增长级别,仅相差一个常数项 ? 的倍数。 2.2.4. 推算方法 渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无需担心。因为在实际使用中,我们只需要掌握
    0 码力 | 342 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Java版

    1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将 数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转 移到计算机上,以更高效的方式解决各种复杂问题。 “计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 ,则以上函数的的操作数量为: ?(?) = 3 + 2? ?(?) 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号称为「大 ? 记号 big‑? notation」,表示函数 ?(?) 的「渐近上界 asymptotic upper bound」。 时间复杂度分析本质上是计算“操作数量函数 ?(?)”的渐近上界,其具有明确的数学定义。
    0 码力 | 376 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Java版

    查字典这个小学生的标配技能,实际上就是大名鼎鼎的「二分查找」。从数据结构角度,我们可以将字典看作 是一个已排序的「数组」;而从算法角度,我们可将上述查字典的一系列指令看作是「二分查找」算法。 小到烹饪一道菜、大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现,使我们可以通过编程将 数据结构存储在内存中,也可以编写代码来调用 CPU, GPU 执行算法,从而将生活中的问题搬运到计算机中, 更加高效地解决各式各样的复杂问题。 的对应方法。 ‧ 算法是数据结构发挥的舞台。数据结构仅存储数据信息,结合算法才可解决特定问题。 ‧ 算法有对应最优的数据结构。给定算法,一般可基于不同的数据结构实现,而最终执行效率往往相差很 大。 Figure 1‑2. 数据结构与算法的关系 如果将「LEGO 乐高」类比到「数据结构与算法」,那么可以得到下表所示的对应关系。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ? 比较小时,算法 B 是要明显优于算 法 C 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Nacos架构&原理

    的崛起,微服务多个模块逐步被划分,包括注册中心、配置中心,如果从 产品定位上,期望定位简单清晰,利于传播,我们需要分别开源我们内部产品,这样又会分散我们 品牌和运营资源。另外大部分客户没有阿里这么大的体量,模块拆分过细,部署和运维成本都会成 倍上涨,而且阿里巴巴也是从最早⼀个产品逐步演化成 3 个产品的,因此我们最终决定将内部三个 产品合并统⼀开源。定位为:⼀个更易于构建云原生应用的动态服务发现、配置管理和服务管理平 Nacos 优势 易⽤:简单的数据模型,标准的 restfulAPI,易用的控制台,丰富的使用文档。 稳定:99.9% 高可用,脱胎于历经阿里巴巴 10 年生产验证的内部产品,支持具有数百万服务的大 规模场景,具备企业级 SLA 的开源产品。 实时:数据变更毫秒级推送生效;1w 级,SLA 承诺 1w 实例上下线 1s,99.9% 推送完成;10w 级,SLA 承诺 1w 实例上下线 3s,99 来实现的。 产品 推送模型 数据⼀致性 痛点 说明 Nacos Config 异步 Servlet 基于 MD5 比 对⼀致性 http 短连接,30 秒定 期创建销毁连接,GC 压力大 md5 值计算也有⼀定 开销,在可接受范围内 Nacos Naming HTTP/UDP UDP 推送 + 补偿查询 丢包,云架构下无法 反向推送 配置和服务器模块的数据推送通道不统⼀,http
    0 码力 | 326 页 | 12.83 MB | 9 月前
    3
  • pdf文档 Java 应用与开发 - Java 数组和字符串

    append() 方法,它会生成一个新的 String 对 象,该新对象包含了“Hello”与 s 连接后的字符串;然后再与 “I love you”连接,再次生成新的 String 对象。 这种工作方式会产生一大堆需要垃圾回收的中间对象! 大纲 数组的概念 一维数组 二维数组 字符串 + 与 StringBuilder String 不变性带来了一定的效率问题。用于 String 的“+”和 “+=”是 append() 方法,它会生成一个新的 String 对 象,该新对象包含了“Hello”与 s 连接后的字符串;然后再与 “I love you”连接,再次生成新的 String 对象。 这种工作方式会产生一大堆需要垃圾回收的中间对象! 大纲 数组的概念 一维数组 二维数组 字符串 + 与 StringBuilder String 不变性带来了一定的效率问题。用于 String 的“+”和 “+=”是 append() 方法,它会生成一个新的 String 对 象,该新对象包含了“Hello”与 s 连接后的字符串;然后再与 “I love you”连接,再次生成新的 String 对象。 这种工作方式会产生一大堆需要垃圾回收的中间对象! 大纲 数组的概念 一维数组 二维数组 字符串 实际情况是如何? 课程配套代码 ± sample.string.StringConcatSample.java 反编译 Java
    0 码力 | 33 页 | 620.46 KB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
Hello算法1.2繁体中文繁体中文Java1.1简体简体中文1.00b20b40b50b1Nacos架构原理arrayandstringpdf
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩