积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)Java(16)

语言

全部中文(简体)(16)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.092 秒,为您找到相关结果约 16 个.
  • 全部
  • 后端开发
  • Java
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Nacos架构&原理

    ,负责服务之间的网络通信、动态路由、负载均衡、 访问控制等治理策略。将服务治理从与业务紧耦合的 SDK 中剥离出来,将其下沉到基础设施层, 以通用的治理能力应对异构的业务系统。这⼀思想,与将底层硬件资源抽象化的 Kubernetes 不谋 而和。因此,随着 Kubernetes 平台的不断发展和完善,服务网格概念也逐渐从理论向实践转变。 149 > Nacos 生态 借助于 Kubernetes 信息列表中选择⼀个 ip 地址对 Provider 服务发起网络调用。为了最大化资源利用率,最小化请求 RT,需要从节点池中选择出⼀个最佳的节点,这就是负载均衡。如果微服务的副本所占的硬件资源 不同时,需要给予硬件资源充足的节点更多的流量。如果微服务的副本所处的地域不同时,需要优 先访问与调用端所处地域相同的节点。如果业务有 Session 粘性的诉求,需要同⼀用户的请求始终 访问同⼀个节点 < 208 209 > Nacos 最佳实践 掌门教育微服务体系 Solar | 阿里巴巴 Nacos 企业级落 地中篇 背景故事 两次 Eureka 引起业务服务大面积崩溃后,虽然通过升级硬件和优化配置参数的方式得以解决, Eureka 服务器目前运行平稳,但我们依旧担心此类事故在未来会再次发生,最终选择落地 Alibaba Nacos 作为掌门教育的新注册中心。 Nacos 开发篇
    0 码力 | 326 页 | 12.83 MB | 9 月前
    3
  • pdf文档 《Java 应用与开发》课程讲义 - 王晓东

    2.1 Java 语言基础 2.1.1 数据类型 Java 数据类型分为两大类:基本数据类型和引用数据类型。基本数据类型是由程 序设计语言系统所定义、不可再划分的数据类型。所占内存大小固定,与软硬件环境 无关,在内存中存放的是数据值本身。Java 的基本数据类型包括:整型(byte、short、 int、long)、浮点型(float、double)、逻辑型(boolean)和字符型(char)。引用数据类 段、…不可到达阶段、†可收集阶段、‡终结阶段、ˆ释放阶段。 Java 需要内存管理,在 JVM 中运行的对象的整个生命周期中,进行人为的内存管 理是必要的,主要原因体现在: • 虽然 JVM 已经代替开发者完成了对内存的管理,但是硬件本身的资源是有限的。 • 如果 Java 的开发人员不注意内存的使用依然会造成较高的内存消耗,导致性能 的降低。 6.3.2 JVM 内存溢出和参数调优 当遇到 OutOfMemoryError 集合要求向其加入的对象元素 必须是 Comparable 接口的实现类的实例,否者程序运行时会抛出造型异常 (java.lang.ClassCastException)。 3. Comparable 接口并不专用于集合框架。 10.6 映射 10.6.1 HashMap 类 java.util.HashMap 类实现了 java.util.Map 接口,该类基于哈希表实现了前述的映射 集合结构。 •
    0 码力 | 330 页 | 6.54 MB | 1 年前
    3
  • pdf文档 JAVA 应用与开发 - 集合与映射

    为保证能够实现元素的排序功能,TreeSet 集合要求向其加入的 对象元素必须是 Comparable 接口的实现类的实例,否者程序 运行时会抛出造型异常。 3. Comparable 接口并不专用于集合框架。 22 28 Comparable �� O 对上述程序的几点说明 1. 用户在重写 compareTo() 方法以定制比较逻辑时,需要确保其 与等价性判断方法 equals() 为保证能够实现元素的排序功能,TreeSet 集合要求向其加入的 对象元素必须是 Comparable 接口的实现类的实例,否者程序 运行时会抛出造型异常。 3. Comparable 接口并不专用于集合框架。 22 28 Comparable �� O 对上述程序的几点说明 1. 用户在重写 compareTo() 方法以定制比较逻辑时,需要确保其 与等价性判断方法 equals() 为保证能够实现元素的排序功能,TreeSet 集合要求向其加入的 对象元素必须是 Comparable 接口的实现类的实例,否者程序 运行时会抛出造型异常。 3. Comparable 接口并不专用于集合框架。 22 28 �� HashMap � java.util.HashMap ���� java.util.Map ����������� ����的������� HashMap
    0 码力 | 66 页 | 713.79 KB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Java版

    B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 方法就是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够 反映真实情况,但也存在较大局限性。 难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。例如,在某台计算机中,算法 A 的运行时 间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要在各种 机器上进行测试,而这是不现实的。 成简单案例的复杂度分析。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何 操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 * 需要 10 ns,打印操作需要 5 ns 等。 树形结构:树、堆、哈希表,元素存在一对多的关系。 ‧ 网状结构:图,元素存在多对多的关系。 3. 数据结构 hello‑algo.com 38 3.1.2. 物理结构:连续与离散 在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 在算法运行过程中,相关数据都存储在内存中。
    0 码力 | 342 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Java版

    ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要 在各种机器上进行测试,统计平均效率,而这是不现实的。 题,因为它们非常适合用分治思想进行分 析。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作 呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 第 2 章 复杂度分析 hello‑algo.com 26 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 对一的顺序关系。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 3.1.2 物理结构:连续与离散 在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 第 3 章 数据结构 hello‑algo
    0 码力 | 376 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 衡两者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 1111 (补码) = 1000 0000 (补码) → −128 你可能已经发现了,上述所有计算都是加法运算。这暗示着一个重要事实:计算机内部的硬件电路主要是基 于加法运算设计的。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简 第 3 章 数据结构 hello‑algo.com 58 单,更容易进行并行化处理,运算速度更快。 请注意,这并不意味着计算机只能
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Java版

    个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 衡两者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 1111 (补码) = 1000 0000 (补码) → −128 你可能已经发现了,上述所有计算都是加法运算。这暗示着一个重要事实:计算机内部的硬件电路主要是基 于加法运算设计的。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简 第 3 章 数据结构 hello‑algo.com 58 单,更容易进行并行化处理,运算速度更快。 请注意,这并不意味着计算机只能
    0 码力 | 376 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Java 版

    个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 CPU 上运行,一个算法的内存操作密集,那么它在高性能内存上的表现就会更好。也 就是说,算法在不同的机器上的测试结果可 衡两者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 1111 (补码) = 1000 0000 (补码) → −128 你可能已经发现了,上述所有计算都是加法运算。这暗示着一个重要事实:计算机内部的硬件电路主要是基 于加法运算设计的。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简 第 3 章 数据结构 www.hello‑algo.com 58 单,更容易进行并行化处理,运算速度更快。 请注意,这并不意味着计
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b1 Java版

    。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 char[] characters = new char[5]; boolean[] booleans = new boolean[5]; 3.1.2. 计算机内存 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达 到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 算法运行中,相关数据都被存储在内
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Java版

    。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 2.2. 时间复杂度 2.2.1. 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 准确预估一段代码的运行时间,该如何做 呢? 1. 首先需要 确定运行平台,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 各种计算操作的所需运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作需要 5 ns 等。 char[] characters = new char[5]; boolean[] booleans = new boolean[5]; 3.1.2. 计算机内存 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达 到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 算法运行中,相关数据都被存储在内
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
Nacos架构原理lecturenotesforJavaApplicationandDevelopmentpdfSetlistmapHello算法1.00b40b51.11.2简体中文简体中文0b10b2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩