积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(284)Weblate(207)Blender(33)人工智能(25)产品与服务(16)笔试面试(1)GIMP(1)

语言

全部英语(159)中文(简体)(106)中文(繁体)(10)zh(3)中文(简体)(2)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(159)其他文档 其他(124)TXT文档 TXT(1)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 284 个.
  • 全部
  • 综合其他
  • Weblate
  • Blender
  • 人工智能
  • 产品与服务
  • 笔试面试
  • GIMP
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 中文(简体)
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Manus AI:Agent元年开启

    2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH E=PstOuv5w%xyabz {|L}=>~}m•O2€.jk• • ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 less structure more intelligence pqrstuvwxyz{|}~•G)€>•JK‚ƒ Manus,•P„…†‡ ˆ‰Š‹xG'B,LJKŒkF,•mP$ŒŽ4••‘JK’3“”,\M•–P,Manus —˜•™&š›Gœ=> !"#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 Moonshot AI 介绍

    MoonshotAI介绍 公司介绍 • 北京⽉之暗⾯科技有限公司(MoonshotAI)是⼀家专注于通⽤⼈⼯智能领域的公司。公司致⼒于 寻求将能源转化为智能的最优解,通过产品与⽤⼾共创智能,实现普惠AI。 • 成⽴时间:2023年3⽉1⽇ • 产品 ◦ Kimi智能助⼿(⽹⻚版:kimi.ai、App和⼩程序搜索“Kimi智能助⼿”即可),发布时间 2023年10⽉9⽇ 2023年10⽉9⽇ ◦ MoonshotAI开放平台(公测中https://platform.moonshot.cn/),发布时间2023年11⽉2⽇ • 欢迎关注公众号,了解更多动态 公司亮点 1.团队拥有世界级的⼈才密度: a. 创始⼈杨植麟是中国35岁以下NLP领域引⽤最⾼的研究者,Transformer-XL和XLNet两篇重要 论⽂的第⼀作者;两位联合创始⼈周昕宇和吴育 ⼤模型⽅⾯。团队成员发明了RoPE相对位置编码,是MetaLLaMa和GooglePALM等⼤多数 主流模型的重要组成部分;发明了groupnormalization,是StableDiffusion等AI模型成功 的关键组件;发明了Transformer-XL,是历史上第⼀个在词级别和字级别都全⾯超越RNN 的注意⼒语⾔模型,解决了语⾔建模上下⽂⻓度的关键问题,定义了语⾔建模的新标准;曾 与
    0 码力 | 74 页 | 1.64 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    AI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI research and do their best work with sophisticated, complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    cooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    普通人学 AI 指南 作者:郭震 日期:2024 年 6 月 8 日 Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 单位 B 和 T . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 AI 工具梳理 6 2.1 问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 ChatGPT . . . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 AI 视频工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Sora (OpenAI 公司) . . . .
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Trends Artificial Intelligence

    IntelligenceTrends – Artificial Intelligence (AI) May 30, 2025 Mary Meeker / Jay Simons / Daegwon Chae / Alexander Krey2 Context We set out to compile foundational trends related to AI. A starting collection of several ’ At the time, the pace of change catalyzed by the internet was unprecedented. Consider now that AI user and usage trending is ramping materially faster…and the machines can outpace us. The pace and OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively new AI company founders have been especially aggressive about innovation / product releases / investments
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 2024 中国开源开发者报告

    大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 年 AI 编程工具的进化 62 | AI 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 AI 基础设施的关键 Part 1:中国开源开发者生态数据 04 | Gitee 数据篇 Part 3:国内 GenAI 生态高亮瞬间 104 | 中国 GenAI 消费应用人气榜 Top10 15 | OSS Compass Insight 106 | AI 创新应用开发大赛获奖作品 主编 高瞻,Gitee AI 运营 设计:张琪 开发者是开源生态的重要支柱。 本章结合 、 的数据分 析,勾勒 2024 年中国开源开发者的整体画像趋势轮廓,主要 反映中国开源开发者使用开源大模型概况、开源项目/组织健康 度,以及中国开源社区的生态评估等情况。 Gitee 数据篇 本报告数据来源:2024年1月至2024年12月 Gitee及Gitee AI平台相关公开数据 4 /
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    :余梦珑博士后 清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? https://chat.deepseek.com 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    DeepSeek:从入门到精通 2025年2月 清华大学 新闻学院 人工智能学院 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 网页端:https://chat.deepseek.com APP:DeepSeek 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响, 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
共 284 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
ManusAIAgent元年开启Moonshot介绍OpenAIintheEnterpriseTVMAlibabaLabs普通通人普通人指南TrendsArtificialIntelligence2024中国开源开发开发者报告DeepSeek入门精通20250204清华华大大学清华大学DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩