积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(177)Weblate(90)KiCad(17)人工智能(14)产品与服务(12)Blender(12)亿图(10)Krita(10)数据可视化(9)DataEase(9)

语言

全部中文(简体)(174)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(124)其他文档 其他(53)
 
本次搜索耗时 0.081 秒,为您找到相关结果约 177 个.
  • 全部
  • 综合其他
  • Weblate
  • KiCad
  • 人工智能
  • 产品与服务
  • Blender
  • 亿图
  • Krita
  • 数据可视化
  • DataEase
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2024 中国开源开发者报告

    更加「接地气」,受到了更多开 发者的喜爱。 虽然面临资源的挑战,但它们的 灵活性和社区驱动力使得它们获 得了更多开发者的支持。 9 / 111 本年度最活跃的开源组织 不同开源组织在 Issue 解决 和 PR 处理数量上的差异,反映了它 们在开发活跃度、社区参与度和 技术成熟度上的不同战略。 技术大厂主导的项目往往具有较 高的资源投入和社区管理效率, 而民间组织则可能更注重技术问 题的快速解决,并逐步吸引更多 Insight 2024 中国开源开发者报告重点聚焦大模型,本章节以大模 型 LLM 开发技术栈作为切入点,将深入探讨以下中国 AI 大模型领域的代表性开源项目社区。 这些开源项目社区覆盖了深度学习框架、向量数据库、AI辅 助编程、LLM 应用开发框架、模型微调、推理优化、LLM Agent,以及检索增强生成(RAG)等多个关键技术栈。 为了更全面客观地展示中国大模型 LLM 开发技术栈的开源 随者到行业引领者的跨越式成长,也为全球人工智能发展注入了新的活力与动力。中国开源模型 的成功并非偶然。在政府对人工智能产业的持续支持以及国内人工智能行业对模型研发的巨额投 入下,从基础算法到行业应用、从算力基础设施到数据资源整合,中国人工智能生态体系正在迅 速完善。这一趋势表明,未来中国有可能在全球人工智能领域占据更为核心的地位。 开源生态的繁荣与协作 随着开源模型影响力的提高,中国开源社区的活跃度也明显提升。无论是企业、研究机构还
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 编程难题。 • 自动化代码审查工具:自动审查代码, 发现潜在问题并提供优化建议,提升开发效
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Moonshot AI 介绍

    ormer-XL和XLNet两篇重要 论⽂的第⼀作者;两位联合创始⼈周昕宇和吴育昕都有10000+的GoogleScholar引⽤。 b. 团队成员囊括NLP,CV,RL(强化学习),Infra⽅⾯新⽣代⼈才,主导了很多有世界影响⼒的⼯ 作,吸引了来⾃Google、Meta、Amazon等全球领先科技公司的海外⼈才加⼊: i. ⼤模型⽅⾯。团队成员发明了RoPE相对位 本性能逼近全监督学习的⾼效对⻬⽅法。 ii. 视觉⽅⾯。团队成员发明了MoCo,引爆了基于对⽐学习的视觉预训练范式,也是过去三年 CVPR引⽤量最⾼的⼯作;发明了ShuffleNet,最⾼效的视觉⽹络结构之⼀;主导开发了 detectron2,⼀个被⼴泛使⽤的视觉开源项⽬并被集成到Meta全线VR/AR产品中。 iii. 强化学习⽅⾯。团队成员作为⼀作提出了基于关系学习的少样本⽅法,得到斯坦福⼤学、 Google、MIT、Amazon等团队的使⽤和扩展,并获得过OpenAIRL联创及负责⼈John Schulman亲⾃邀请加盟。 iv. 基础设施⽅⾯。团队核⼼成员曾带领数⼗⼈从零开发世界领先的深度学习框架,也具备数千 卡集群全⾃动化硬件运维告警、数百亿特征检索、⼤规模(数⼗PB数据、百万台机器)分 布式系统数量级性能优化的经验。 c. ⽬前团队⼈数超过80⼈,每个⽉都有在全球某个领域有显著影响⼒的⼈加⼊。
    0 码力 | 74 页 | 1.64 MB | 1 年前
    3
  • pdf文档 2023 中国开源开发者报告

    发展的新阶段。LLM Agent 是一种基于 LLM 的智能代 理,它能够自主学习和执行任务,具有一定的“认知能力 和决策能力”。LLM Agent 的出现,标志着 LLM 从传 统的模型训练和应用模式,转向以 Agent 为中心的智能 化模式。LLM Agent 打破了传统 LLM 的被动性,使 LLM 能够主动学习和执行任务,从而提高了 LLM 的应用 范围和价值;它为 LLM 的智能化发展提供了新的方向, 快速迭代发展,诸如 Dify.AI 的 LLMOps、Milvus 的向量 数据库、CodeGeeX 与 Comate 的 AI 编程、对 LLM Prompt 的研究、OneFlow 的深度学习框架。 值得一提的还有华为的盘古大模型,其中盘古气象大模型是 首个精度超过传统数值预报方法的 AI 模型,速度相比传统 数值预报提速 10000 倍以上,能够提供全球气象秒级预 报。盘古大模 GPT-2和GPT-3模型开发的前研究人员组建, 专注于开发通用 AI 系统和语言模型,并秉持负责任的 AI 使用理念。 李彦宏称:“无论是哪家公司,都不可能靠突击几个月就能做出这样的大语 言模型。深度学习、自然语言处理,需要多年的坚持和积累,没法速成。” 长度是 Llama 1 的 2 倍,并采用了分组查询注意力机制。具体来说,Llama 2 预训练模型是在 2 万亿的 token 上训练的,微调
    0 码力 | 87 页 | 31.99 MB | 1 年前
    3
  • pdf文档 2023年中国基础软件开源产业研究白皮书

    操作系统:是软硬件资源的资源管理者, 为用户与应用程序提供交互接口 数据库:通过对数据的访问与管理,支 持各种应用程序和业务的需求 编程语言:人与计算机交互的“语言”, 含编译器、基础编程语言、IED等 社区协作:鼓励各方在开放平台上协作 贡献,推动开源内容的发展 创新改进:通过资源共享与协作共生, 提升开源内容质量,并产生新的内容 自由共享:开源内容可以免费被任何人 查看、学习、使用 透明与可审查:开源的源代码可以被任 力较扎实的领域选择开源 社区运营是开源人力投入的焦点,头部 企业社区人员投入量超过千名 为方便各职能开源人员交流和开源业务 整合,企业针对性调整组织架构 基础软件是底层技术投入较多的领域之 一,需要企业持续供给技术资源 开源项目的研发、运营、激励都需要 “真金白银”的投入 企业作为开源发起者,应主导开源生态 的建设,努力引入战略合作伙伴 12 ©2023.11 iResearch Inc. 从包含技术、产品、运营、战略、职能各部门组织超过千人的团队,投入到开 源项目的治理。近年来,越来越多的企业选择在内部设立开源部门/开源办公室(OSPO)/开源委员会,统筹沟通企业开源人员,协 调开源资源分配,体现了企业对于开源战略及运营重视高度的提升。 来源:根据专家访谈、公开资料,由艾瑞咨询研究院自主研究及绘制。 法务服务 社区 治理 社区 运营 代码 审核 开源 开发 生态 合作
    0 码力 | 43 页 | 4.69 MB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.org/a/chanpin/oneflow/) 9 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning)
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训 通过多步引导,实现更深入的内容 探讨 控制每个步骤的输出深度,避免冗余 创意激发 多角度提示激发AI的创造性思维 在创意和连贯之间找到平衡 质量控制 多次迭代提高内容质量 需要更多的实践和计算资源 灵活调整 可根据中奖结果随时调整后续提示 实时调整需要较高的判断和决策能力 提示语链的优势与挑战 提示语链的设计原则 01 目标明确性 02 逻辑连贯性 03 渐进复杂性 04 灵活适应性 Connection(连接):建立子任务之间的逻辑关联 • Temporal Arrangement(时序安排):考虑任务的时 间维度 • Resource Allocation(资源分配):为每个子任务分配 适当的注意力资源 • Adaptation(适应):根据AI反馈动态调整任务结构 为了更有效地进行任务分解,可以采用SPECTRA模型(Systematic Partitioning for
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训 通过多步引导,实现更深入的内容 探讨 控制每个步骤的输出深度,避免冗余 创意激发 多角度提示激发AI的创造性思维 在创意和连贯之间找到平衡 质量控制 多次迭代提高内容质量 需要更多的实践和计算资源 灵活调整 可根据中奖结果随时调整后续提示 实时调整需要较高的判断和决策能力 提示语链的优势与挑战 提示语链的设计原则 01 目标明确性 02 逻辑连贯性 03 渐进复杂性 04 灵活适应性 Connection(连接):建立子任务之间的逻辑关联 • Temporal Arrangement(时序安排):考虑任务的时 间维度 • Resource Allocation(资源分配):为每个子任务分配 适当的注意力资源 • Adaptation(适应):根据AI反馈动态调整任务结构 为了更有效地进行任务分解,可以采用SPECTRA模型(Systematic Partitioning for
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Krita 4.x 官方文档中文版 2021-08-06A

    打好基础。要按软件界⾯查找特 定功能,请移步 参考⼿册 。 实例教程 通过实例讲解各种常⻅的绘画 流程、效果和技巧如何在 Krita 中实现。配合 数字绘画 基础知识 阅读,可快速完成 数字绘画的⼊⻔学习。 新⼿⼊⻔ 如果你从未接触过类似 Krita 的软 件,我们建议你从本章⼊⻔。如 果你来⾃ PS 和 SAI,我们也准备 了 迁移教程 。 参考⼿册 按照软件界⾯分类,并逐⼀介 绍每个功能项的原理和含义, ⼩节的标题,⽤浏览器的搜索 下载 Krita 专⽤的笔刷包、纹理包 和 Python 插件等各种扩展资源, 让创作⼿段更加丰富。还有外部 教程、视频等学习资源。 功能 (Ctrl+F) 可查找所需的内 容,点击直接访问。 使⽤指南 你可以通过本在线⼿册了解 Krita 的各种特性,也可以学习如何从 其他软件迁移到 Krita。 ⽬录: 新⼿⼊⻔ 安装 ⾸次使⽤ Krita 基础概念 视图控制 ⼩节介绍了如何新建和保存⽂档。基础概 念 ⼩节简要介绍了 Krita 各个功能⼤类。视图控制 ⼩节介绍了如何 使⽤ Krita 的界⾯,如平移、缩放和旋转画布等。 在掌握这些基础之后,你还可以进⾏更深⼊的学习。使⽤指南 的其 他章节对 Krita 的各个主要功能进⾏了更为详尽的介绍。数字绘画 基础知识 ⼀章介绍了数字绘画和绘画本⾝的⼀些基本理念。参考⼿ 册 ⼀章可以查找到每个按钮的作⽤。 ⽬录: 安装
    0 码力 | 1594 页 | 110.95 MB | 1 年前
    3
  • pdf文档 Krita 5.2 官方文档中文版 2023-12-08A

    打好基础。如需按软件界面查找 特定功能,请移步参考手册。 实例教程 通过实例讲解各种常见的绘画 流程、效果和技巧如何在 Krita 中实现。配合数字绘画 基础知识阅读,可快速完成数 字绘画的入门学习。 新手入门 如果你从未接触过任何数字绘画 软件,我们建议你从本章入门。 如果你来自 PS 和 SAI,我们也准 备了迁移教程。 参考手册 按照软件界面分类,并逐一介 绍每个功能项的原理和含义, 各小节的标题。请用浏览器的 下载 Krita 专用的笔刷包、纹理包 和 Python 插件等各种扩展资源, 让创作手段更加丰富。还有外部 教程、视频等学习资源。 搜索功能 (Ctrl+F) 查找所需的 内容,点击直接访问。 使用指南 你可以通过本在线手册了解 Krita 的各种特性,也可以学习如何从 其他软件迁移到 Krita。 目录: 新手入门 安装 首次使用 Krita 基础概念 视图控制 基本 绘画。基础概念小节集中介绍了 Krita 和数字绘画中常用的基本概 念。视图控制小节介绍了如何操作 Krita 的界面,如平移、缩放和 旋转画布等。 在掌握这些基础之后,你还可以进行更深入的学习。使用指南的其 他章节对 Krita 的各种常用操作流程进行了更加深入的介绍。数字 绘画基础知识介绍了数字绘画和绘画本身的一些基础知识。参考手 册按照 Krita 的界面结构整理并介绍了每一个功能、按钮和选项的
    0 码力 | 1685 页 | 91.87 MB | 1 年前
    3
共 177 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 18
前往
页
相关搜索词
2024中国开源开发开发者报告清华大学DeepSeekDeepResearch科研MoonshotAI介绍2023基础软件产业研究白皮皮书白皮书模型LLM技术入门精通20250204清华华大大学Krita官方文档中文文版中文版20210806A5.21208A
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩